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1. Introduction 

This memo catalogs a number of known TCP implementation problems. 
The goal in doing so is to improve conditions in the existing 
Internet by enhancing the quality of current TCP/IP implementations. 
It is hoped that both performance and correctness issues can be 
resolved by making implementors aware of the problems and their 
solutions. In the long term, it is hoped that this will provide a 
reduction in unnecessary traffic on the network, the rate of 
connection failures due to protocol errors, and load on network 
servers due to time spent processing both unsuccessful connections 
and retransmitted data. This will help to ensure the stability of 
the global Internet. 

Each problem is defined as follows: 

Name of Problem 
The name associated with the problem. In this memo, the name is 
given as a subsection heading. 

Classification 
One or more problem categories for which the problem is 
classified: "congestion controll' , tlperformancelf , "reliability" , 
Itresource management". 

Description 
A definition of the problem, succinct but including necessary 
background material. 

Significance 
A brief summary of the sorts of environments for which the problem 
is significant: 
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Implications 
Why the problem is viewed as a problem. 

Relevant RFCs 
The RFCs defining the TCP specification with which the problem 
conflicts. These RFCs often qualify behavior using terms such as 
MUST, SHOULD, MAY, and others written capitalized. See RFC 2119 
for the exact interpretation of these terms. 

Trace file demonstrating the problem 
One or more ASCII trace files demonstrating the problem, if 
applicable. 

Trace file demonstrating correct behavior 
One or more examples of how correct behavior appears in a trace, 
if applicable. 

References 
References that further discuss the problem. 

How to detect 
How to test an implementation to see if it exhibits the problem. 
This discussion may include difficulties and subtleties associated 
with causing the problem to manifest itself, and with interpreting 
traces to detect the presence of the problem (if applicable). 

How to fix 
For known causes of the problem, how to correct the 
implementation. 

2. Known implementation problems 

2.1. 

Name of Problem 
No initial slow start 

Classification 
Congestion control 

Description 
When a TCP begins transmitting data, it is required by RFC 1122, 
4.2.2.15, to engage in a tlslow start" by initializing its 
congestion window, cwnd, to one packet (one segment of the maximum 
size). (Note that an experimental change to TCP, documented in 
LRFC24141, allows an initial value somewhat larger than one 
packet.) It subsequently increases cwnd by one packet for each 
ACK it receives for new data. The minimum of cwnd and the 

Paxson, et. al. Informational [Page 31 



RFC 2525 TCP Implementation Problems March 1999 

receiver's advertised window bounds the highest sequence number 
the TCP can transmit. A TCP that fails to initialize and 
increment cwnd in this fashion exhibits "NO initial slow start". 

Sisnificance 
I 

In congested environments, detrimental to the performance of other 
connections, and possibly to the connection itself. 

Implications 
A TCP failing to slow start when beginning a connection results in 
traffic bursts that can stress the network, leading to excessive 
queueing delays and packet loss. 

Implementations exhibiting this problem might do so because they 
suffer from the general problem of not including the required 
congestion window. These implementations will also suffer from 
"NO slow start after retransmission timeout". 

There are different shades of "NO initial slow start". From the 
perspective of stressing the network, the worst is a connection 
that simply always sends based on the receiver's advertised 
window, with no notion of a separate congestion window. Another 
form is described in "Uninitialized CWND" below. 

Relevant RFCs 
RFC 1122 requires use of slow start. RFC 2001 gives the specifics 
of slow start. 

Trace file demonstrating it 
Made using tcpdump [Jacobson891 recording at the connection 
responder. No losses reported by the packet filter. 

10:40:42.244503 B > A: 

10:40:42.259908 A > B: 

10:40:42.389992 B > A: 
10:40:42.664975 A > B: 
10:40:42.700185 A > B: 
10:40:42.718017 A > B: 
10:40:42.762945 A > B: 
10:40:42.811273 A > B: 
10:40:42.829149 A > B: 
10:40:42.853687 B > A: 
10:40:42.864031 B > A: 

Paxson, et. al. 

S 1168512000:1168512000(0) win 32768 
cmss 1460,nop,wscale O B  (DF) [tos Ox81 

ack 1168512001 win 32768 cmss 1460> 
S 3688169472 :3688169472 (0) 

. ack 1 win 33580 (DF) [tos Ox81 
P ~ 5 1 3  (512) ack 1 win 32768 
. 513:1973 (1460) ack 1 win 32768 
. 1973:3433(1460) ack 1 win 32768 
. 3433:4893 (1460) ack 1 win 32768 
. 4893 :6353 (1460) ack 1 win 32768 
. 6353:7813(1460) ack 1 win 32768 
. ack 1973 win 33580 (DF) [tos Ox81 
. ack 3433 win 33580 (DF) [tos Ox81 
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After the third packet, the connection is established. A, the 
connection responder, begins transmitting to B, the connection 
initiator. Host A quickly sends 6 packets comprising 7812 bytes, 
even though the SYN exchange agreed upon an MSS of 1460 bytes 
(implying an initial congestion window of 1 segment corresponds to 
1460 bytes), and so A should have sent at most 1460 bytes. 

The ACKs sent by B to A in the last two lines indicate that this 
trace is not a measurement error (slow start really occurring but 
the corresponding ACKs having been dropped by the packet filter). 

A second trace confirmed that the problem is repeatable. 

Trace file demonstrating correct behavior 
Made using tcpdump recording at the connection originator. No 
losses reported by the packet filter. 

12:35:31.914050 C > D: S 

12:35:32.068819 D > C: S 

12:35:32.069341 C D: . 
12:35:32.075213 C > D: P 
12:35:32.286073 D > C: . 
12:35:32.287032 C > D: . 
12:35:32.287506 C > D: . 
12:35:32.432712 D > C: . 
12:35:32.433690 C > D: . 
12:35:32.434481 C D: . 
12:35:32.435032 C > D: . 
12:35:32.594526 D C: . 
12:35:32.595465 C > D: . 
12:35:32.595947 C > D: . 
12:35:32.596414 C > D: . 
12:35:32.596888 C > D: . 
12:35:32.733453 D > C: . 

1448571845:1448571845 (0) 
win 4380 Cmss 1460> 
1755712000:1755712000 (0) 
ack 1448571846 win 4096 
ack 1 win 4608 
1:513(512) ack 1 win 4608 
ack 513 win 4096 
513:1025(512) ack 1 win 4608 
1025:1537(512) ack 1 win 4608 
ack 1537 win 4096 
1537:2049(512) ack 1 win 4608 
2049:2561(512) ack 1 win 4608 
2561:3073(512) ack 1 win 4608 
ack 3073 win 4096 
3073:3585 (512) ack 1 win 4608 
3585:4097(512) ack 1 win 4608 
4097:4609(512) ack 1 win 4608 
4609:5121(512) ack 1 win 4608 
ack 4097 win 4096 

References 
This problem is documented in [Paxson97]. 

How to detect 
For implementations always manifesting this problem, it shows up 
immediately in a packet trace or a sequence plot, as illustrated 
above. 
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How to fix 
If the root problem is that the implementation lacks a notion of a 
congestion window, then unfortunately this requires significant 
work to fix. However, doing so is important, as such 
implementations also exhibit "NO slow start after retransmission 
t imeout . 

2.2. 

Name of Problem 
No slow start after retransmission timeout 

Classification 
Congestion control 

Description 
When a TCP experiences a retransmission timeout, it is required by 
RFC 1122, 4.2.2.15, to engage in llslow start" by initializing its 
congestion window, cwnd, to one packet (one segment of the maximum 
size). It subsequently increases cwnd by one packet for each ACK 
it receives for new data until it reaches the "congestion 
avoidance" threshold, ssthresh, at which point the congestion 
avoidance algorithm for updating the window takes over. A TCP 
that fails to enter slow start upon a timeout exhibits "No slow 
start after retransmission timeout". 

Significance 
In congested environments, severely detrimental to the performance 
of other connections, and also the connection itself. 

Implications 
Entering slow start upon timeout forms one of the cornerstones of 
Internet congestion stability, as outlined in [Jacobson88]. If 
TCPs fail to do so,  the network becomes at risk of suffering 
"congestion collapseII [RFC896] . 

Relevant RFCs 
RFC 1122 requires use of slow start after loss. RFC 2001 gives 
the specifics of how to implement slow start. RFC 896 describes 
congestion collapse. 

The retransmission timeout discussed here should not be confused 
with the separate "fast recoveryll retransmission mechanism 
discussed in RFC 2001. 

Trace file demonstrating it 
Made using tcpdump recording at the sending TCP ( A ) .  No losses 
reported by the packet filter. 
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10:40:59.090612 B > A: . 
10:40:59.222025 A > B: . 
10:40:59.868871 A > B: . 
10:41:00.016641 B > A: . 
10:41:00.036709 A > B: . 
10:41:00.045231 A > B: . 
10:41:00.053785 A > B: . 
10:41:00.062426 A > B: . 
10:41:00.071074 A > B: . 
10:41:00.079794 A > B: . 
10:41:00.089304 A > B: . 
10:41:00.097738 A > B: . 
10:41:00.106409 A > B: . 
10:41:00.115024 A > B: . 
10:41:00.123576 A > B: . 
10:41:00.132016 A B: . 
10:41:00.141635 A > B: . 
10:41:00.150094 A > B: . 
10:41:00.158552 A > B: . 
10:41:00.167053 A > B: . 
10:41:00.175518 A > B: . 
10:41:00.210835 A > B: . 
10:41:00.226108 A > B: . 
10:41:00.241524 B > A: . 

ack 357125 win 33580 (DF) [tos Ox81 
357125 : 358585 (1460) ack 1 win 32768 
357125:358585(1460) ack 1 win 32768 
ack 364425 win 33580 (DF) [tos Ox81 
364425:365885(1460) ack 1 win 32768 
365885:367345(1460) ack 1 win 32768 
367345:368805 (1460) ack 1 win 32768 
368805:370265(1460) ack 1 win 32768 
370265:371725(1460) ack 1 win 32768 
371725:373185(14601 ack 1 win 32768 
373185:374645(1460) ack 1 win 32768 
374645:376105 (1460) ack 1 win 32768 
376105:377565(1460) ack 1 win 32768 
377565:379025(1460) ack 1 win 32768 
379025:380485(1460) ack 1 win 32768 
380485:381945(1460) ack 1 win 32768 
381945:383405(1460) ack 1 win 32768 
383405:384865(1460) ack 1 win 32768 
384865:386325 (1460) ack 1 win 32768 
386325:387785(1460) ack 1 win 32768 
387785:389245 (1460) ack 1 win 32768 
389245:390705(1460) ack 1 win 32768 
390705:392165(1460) ack 1 win 32768 
ack 389245 win 8760 (DF) [tos Ox81 

The first packet indicates the ack point is 357125. 130 msec 
after receiving the ACK, A transmits the packet after the ACK 
point, 357125:358585. 640 msec after this transmission, it 
retransmits 357125:358585, in an apparent retransmission timeout. 
At this point, A's cwnd should be one MSS, or 1460 bytes, as A 
enters slow start. The trace is consistent with this possibility. 

B replies with an ACK of 364425, indicating that A has filled a 
sequence hole. At this point, A's cwnd should be 1460*2 = 2920 
bytes, since in slow start receiving an ACK advances cwnd by MSS. 
However, A then launches 19 consecutive packets, which is 
inconsistent with slow start. 

A second trace confirmed that the problem is repeatable. 

Trace file demonstrating correct behavior 
Made using tcpdump recording at the sending TCP ( C ) .  No losses 
reported by the packet filter. 

12:35:48.442538 C > D: P 465409:465921(512) ack 1 win 4608 
12:35:48.544483 D > C: . ack 461825 win 4096 
12:35:48.703496 D > C: . ack 461825 win 4096 
12:35:49.044613 C > D: . 461825:462337(512) ack 1 win 4608 
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12:35:49.192282 D > C: . ack 465921 win 2048 
12:35:49.192538 D C: . ack 465921 win 4096 
12:35:49.193392 C > D: P 465921:466433(512) ack 1 win 4608 
12:35:49.194726 C D: P 466433:466945(512) ack 1 win 4608 
12:35:49.350665 D C: . ack 466945 win 4096 
12:35:49.351694 C > D: . 466945:467457(512) ack 1 win 4608 
12:35:49.352168 C D: . 467457:467969(512) ack 1 win 4608 
12:35:49.352643 C > D: . 467969:468481(512) ack 1 win 4608 
12:35:49.506000 D > C: . ack 467969 win 3584 

After C transmits the first packet shown to D, it takes no action 
in response to D ' s  ACKs for 461825, because the first packet 
already reached the advertised window limit of 4096 bytes above 
461825. 600 msec after transmitting the first packet, C 
retransmits 461825:462337, presumably due to a timeout. Its 
congestion window is now MSS (512 bytes). 

D acks 465921, indicating that C ' s  retransmission filled a 
sequence hole. This ACK advances C's cwnd from 512 to 1024. Very 
shortly after, D acks 465921 again in order to update the offered 
window from 2048 to 4096. This ACK does not advance cwnd since it 
is not for new data. Very shortly after, C responds to the newly 
enlarged window by transmitting two packets. D acks both, 
advancing cwnd from 1024 to 1536. C in turn transmits three 
packets. 

References 
This problem is documented in LPaxson971. 

How to detect 
Packet loss is common enough in the Internet that generally it is 
not difficult to find an Internet path that will force 
retransmission due to packet loss. 

If the effective window prior to loss is large enough, however, 
then the TCP may retransmit using the "fast recovery" mechanism 
described in RFC 2001. In a packet trace, the signature of fast 
recovery is that the packet retransmission occurs in response to 
the receipt of three duplicate ACKs, and subsequent duplicate ACKs 
may lead to the transmission of new data, above both the ack point 
and the highest sequence transmitted so far. An absence of three 
duplicate ACKs prior to retransmission suffices to distinguish 
between timeout and fast recovery retransmissions. In the face of 
only observing fast recovery retransmissions, generally it is not 
difficult to repeat the data transfer until observing a timeout 
retransmission. 
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Once armed with a trace exhibiting a timeout retransmission, 
determining whether the TCP follows slow start is done by 
computing the correct progression of cwnd and comparing it to the 
amount of data transmitted by the TCP subsequent to the timeout 
retransmission. 

How to fix 
If the root problem is that the implementation lacks a notion of a 
congestion window, then unfortunately this requires significant 
work to fix. However, doing so is critical, f o r  reasons outlined 
above. 

2.3. 

Name of Problem 
Uninitialized CWXD 

Classification 
Congestion control 

Description 
As described above for "No initial slow start", when a TCP 
connection begins cwnd is initialized to one segment (or perhaps a 
few segments, if experimenting with CRFC24141). One particular 
form of "No initial slow start'l, worth separate mention as the bug 
is fairly widely deployed, is "Uninitialized CWND". That is, 
while the TCP implements the proper slow start mechanism, it fails 
to initialize cwnd properly, so slow start in fact fails to occur. 

One way the bug can occur is if, during the connection 
establishment handshake, the SYN ACK packet arrives without an MSS 
option. The faulty implementation uses receipt of the MSS option 
to initialize cwnd to one segment; if the option fails to arrive, 
then cwnd is instead initialized to a very large value. 

Significance 
In congested environments, detrimental to the performance of other 
connections, and likely to the connection itself. The burst can 
be so large (see below) that it has deleterious effects even in 
uncongested environments. 

Implications 
A TCP exhibiting this behavior is stressing the network with a 
large burst of packets, which can cause loss in the network. 

Relevant RFCs 
RFC 1122 requires use of slow start. RFC 2001 gives the specifics 
of slow start. 
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Trace file demonstrating it 
This trace was made using tcpdump running on host A. Host A is 
the sender and host B is the receiver. The advertised window and 
timestamp options have been omitted for clarity, except for the 
first segment sent by host A. Note that A sends an MSS option in 
its initial SYN but B does not include one in its reply. 

16:56:02.226937 A > B:  S 237585307:237585307(0) win 8192 

16:56:02.557135 B > A: S 1617216000:1617216000(0) 

16:56:02.557788 A > B: . ack 1 win 8192 
16:56:02.566014 A > B: . 1:537(536) ack 1 
16:56:02.566557 A > B: . 537:1073(536) ack 1 
16:56:02.567120 A > B: . 1073:1609(536) ack 1 
16:56:02.567662 A > B: P 1609:2049(440) ack 1 
16:56:02.568349 A > B: . 2049:2585(536) ack 1 
16:56:02.568909 A > B: . 2585:3121(536) ack 1 

cmss 536,nop,wscale O,nop,nop,timestamp[Itcpl> 

ack 237585308 win 16384 

[54 additional burst segments deleted f o r  brevity] 

16:56:02.936638 A > B: . 32065:32601(536) ack 1 
16:56:03.018685 B > A: . ack 1 

After the three-way handshake, host A bursts 61 segments into the 
network, before duplicate ACKs on the first segment cause a 
retransmission to occur. Since host A did not wait for the ACK on 
the first segment before sending additional segments, it is 
exhibiting IIUnini tiali zed CWND" 

Trace file demonstrating correct behavior 

See the example for "NO initial slow start". 

References 
This problem is documented in [Paxson971. 

How to detect 
This problem can be detected by examining a packet trace recorded 
at either the sender or the receiver. However, the bug can be 
difficult to induce because it requires finding a remote TCP peer 
that does not send an MSS option in its SYN ACK. 

How to fix 
This problem can be fixed by ensuring that cwnd is initialized 
upon receipt of a SYN ACK, even if the SYN ACK does not contain an 
MSS option. 
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2.4, 

Name of Problem 
Inconsistent retransmission 

Classification 
Reliability 

Description 
If, for a given sequence number, a sending TCP retransmits 
different data than previously sent for that sequence number, then 
a strong possibility arises that the receiving TCP will 
reconstruct a different byte stream than that sent by the sending 
application, depending on which instance of the sequence number it 
accepts. 

Such a sending TCP exhibits "Inconsistent retransmission". 

Significance 
Critical for all environments. 

Implications 
Reliable delivery of data is a fundamental property of TCP. 

Relevant RFCs 
RFC 793, section 1.5, discusses the central role of reliability in 
TCP operation. 

Trace file demonstrating it 
Made using tcpdump recording at the 
reported by the packet filter. 

receiving TCP 

12:35:53.145503 A > B: FP 90048435:90048461(26) 
ack 393464682 win 4096 

4500 0042 9644 0000 
3006 e4c2 86bl 0401 83f3 OlOa b2a4 0015 
055e 07b3 1773 cb6a 5019 1000 68a9 0000 

data starts here>504f 5254 2031 3334 2c31 3737*2c34 2c31 
2c31 3738 2c31 3635 OdOa 

12:35:53.146479 B > A: R 393464682:393464682(0) win 8192 
12:35:53.851714 A B: FP 90048429:90048463(34) 

ack 393464682 win 4096 
4500 004a 965b 0000 

3006 e4a3 86bl 0401 83f3 OlOa b2a4 0015 
055e 07ad 1773 cb6a 5019 1000 8bd3 0000 

data starts here>5041 5356 OdOa 504f 5254 2031 3334 2c31 
3737*2c31 3035 2c31 3431 2c34 2c31 3539 
OdOa 

No losses 

Paxson, et. a1 . Informational [Page 113 



RFC 2525 TCP Implementation Problems March 1999 

The sequence numbers shown in this trace are absolute and not 
adjusted to reflect the ISN. The 4-digit hex values show a dump 
of the packet's IP and TCP headers, as well as payload. A first 
sends to B data for 90048435:90048461. The corresponding data 
begins with hex words 504f, 5254, etc. 

E responds with a RST. Since the recording location was local to 
B, it is unknown whether A received the RST. 

A then sends 90048429:90048463, which includes six sequence 
positions below the earlier transmission, all 26 positions of the 
earlier transmission, and two additional sequence positions. 

The retransmission disagrees starting just after sequence 
90048447, annotated above with a leading I * ' .  These two bytes 
were originally transmitted as hex 2c34 but retransmitted as hex 
2c31. Subsequent positions disagree as well. 

This behavior has been observed in other traces involving 
different hosts. It is unknown how to repeat it. 

In this instance, no corruption would occur, since B has already 
indicated it will not accept further packets from A. 

A- second example illustrates a slightly different instance of the 
problem. The tracing again was made with tcpdump at the receiving 
TCP (D) . 

22:23:58.645829 C > D: P 185:212(27) ack 565 win 4096 
4500 0043 90a3 0000 

3306 0734 cbfl 9eef 83f3 OlOa 0525 0015 
a3a2 faba 578c 70a4 5018 1000 9a53 0000 

data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538 
2c32 3339 2c35 2c34 330d Oa 

22:23:58.646805 D > C: . ack 184 win 8192 
4500 0028 beeb 0000 

3e06 ce06 83f3 OlOa cbfl 9eef 0015 0525 
578c 70a4 a3a2 fab9 5010 2000 342f 0000 

4500 0043 9435 0000 
3306 03a2 cbfl 9eef 83f3 OlOa 0525 0015 
a3a2 fabb 578c 70a4 5019 1000 9a51 0000 

data starts here>504f 5254 2032 3033 2c32 3431 2c31 3538 
2c32 3339 2c35 2c34 330d Oa 

22:31:36.532244 C > D: FP 186:213(27) ack 565 win 4096 
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In this trace, sequence numbers are relative. C sends 185:212, 
but D only sends an ACK for 184 (so sequence number 184 is 
missing). C then sends 186:213. The packet payload is identical 
to the previous payload, but the base sequence number is one 
higher, resulting in an inconsistent retransmission. 

Neither trace exhibits checksum errors. 

Trace file demonstrating correct behavior 
(Omitted, as presumably correct behavior is obvious.) 

References 
None known. 

How to detect 
This problem unfortunately can be very difficult to detect, since 
available experience indicates it is quite rare that it is 
manifested. No I1trigger1* has been identified that can be used to 
reproduce the problem. 

How to fix 
In the absence of a known lltriggerll, we cannot always assess how 
to fix the problem. 

In one implementation (not the one illustrated above), the problem 
manifested itself when (1) the sender received a zero window and 
stalled; ( 2 )  eventually an ACK arrived that offered a window 
larger than that in effect at the time of the stall; (3) the 
sender transmitted out of the buffer of data it held at the time 
of the stall, but (4) failed to limit this transfer to the buffer 
length, instead using the newly advertised (and larger) offered 
window. Consequently, in addition to the valid buffer contents, 
it sent whatever garbage values followed the end of the buffer. 
If it then retransmitted the corresponding sequence numbers, at 
that point it sent the correct data, resulting in an inconsistent 
retransmission. Note that this instance of the problem reflects a 
more general problem, that of initially transmitting incorrect 
data. 

2. ,5. 

Name of Problem 
Failure to retain above-sequence data 

Classification 
Congestion control, performance 

1 
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Description 
When a TCP receives an "above sequence" segment, meaning one with 
a sequence number exceeding RCV.NXT but below RCV.NXT+RCV.WND, it 
SHOULD queue the segment for later delivery (RFC 1122, 4.2.2.20). 
(See RFC 793 for the definition of RCV.NXT and RCV.WND.1 A TCP 
that fails to do so is said to exhibit "Failure to retain above- 
sequence data". 

It may sometimes be appropriate for a TCP to discard above- 
sequence data to reclaim memory. If they do so only rarely, then 
we would not consider them to exhibit this problem. Instead, the 
particular concern is with TCPs that always discard above-sequence 
data. 

Siqnificance 
I 

In environments prone to packet loss, detrimental to the 
performance of both other connections and the connection itself. 

Implications 
In times of congestion, a failure to retain above-sequence data 
will lead to numerous otherwise-unnecessary retransmissions, 
aggravating the congestion and potentially reducing performance by 
a large factor. 

Relevant RFCs 
RFC 1122 revises RFC 793 by upgrading the latter's MAY to a SHOULD 
on this issue. 

Trace file demonstrating it 
Made using tcpdump recording at the receiving TCP. No losses 
reported by the packet filter. 

B is the TCP sender, A the receiver. A exhibits failure to retain 
above sequence-data: 

10:38:10.164860 B > A: . 221078:221614(536) ack 1 win 33232 [tos Ox81 
10:38:10.170809 B > A: . 221614:222150(536) ack 1 win 33232 [tos 0x81 
10:38:10.177183 B > A: . 222150:222686(536) ack 1 win 33232 [tos Ox81 
10:38:10.225039 A > B: . ack 222686 win 25800 

Here B has sent up to (relative) sequence 222686 in-sequence, and 
A accordingly acknowledges. 

10:38:10,268131 B > A: . 223222:223758(536) ack 1 win 33232 [tos Ox81 
10:38:10.337995 B > A: . 223758:224294(536) ack 1 win 33232 [tos Ox81 
10:38:10.344065 B =. A: . 224294:224830(536) ack 1 win 33232 [tos Ox81 
10:38:10.350169 B > A: . 224830:225366(536) ack 1 win 33232 [tos Ox81 
10:38:10.356362 B > A: . 225366:225902(536) ack 1 win 33232 [tos Ox81 
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10:38:10.362445 B > A: . 
10:38:10.368579 B > A: . 
10:38:10.374732 B > A: . 
10:38:10.380825 B > A: . 
10:38:10.387027 B > A: . 
10:38:10.393053 B > A: . 
10:38:10.399193 B > A: . 
10:38:10.405356 B > A: . 

225902:226438(536) ack 1 win 33232 
226438:226974(536) ack 1 win 33232 
226974:227510(536) ack 1 win 33232 
227510:228046(536) ack 1 win 33232 
228046:228582(536) ack 1 win 33232 
228582:229118(536) ack 1 win 33232 
229118:229654(536) ack 1 win 33232 
229654:230190(536) ack 1 win 33232 

[tos Ox81 
[tos Ox81 
[tos Ox81 
[tos Ox81 
[tos Ox81 
[tos Ox81 
[tos Ox81 
[tos Ox81 

A now receives 13 additional packets from B. These are above- 
sequence because 222686:223222 was dropped. The packets do 
however fit within the offered window of 25800. A does not 
generate any duplicate ACKs for them. 

The trace contributor (V. Paxson) verified that these 13 packets 
had valid IP and TCP checksums. 

10:38:11.917728 B > A: . 222686:223222(536) ack 1 win 33232 [tos Ox81 
10:38:11.930925 A > B: . ack 223222 win 32232 

B times out for 222686:223222 and retransmits it. Upon receiving 
it, A only acknowledges 223222. Had it retained the valid above- 
sequence packets, it would instead have ack’d 230190. 

10:38:12.048438 3 > A: . 223222:223758(536) ack 1 win 33232 Ctos Ox81 
10:38:12.054397 B > A: . 223758:224294(536) ack 1 win 33232 [tos Ox81 
10:38:12.068029 A > B: . ack 224294 win 31696 

B retransmits two more packets, and A only acknowledges them. 
This pattern continues as B retransmits the entire set of 
previously-received packets. 

A second trace confirmed that the problem is repeatable. 

Trace file demonstrating correct behavior 
Made using tcpdump recording at the receiving TCP ( C ) .  No losses 
reported by the packet filter. 

09:11:25.790417 D > C: . 33793:34305(512) ack 1 win 61440 
09:11:25.791393 D > C: . 34305:34817(512) ack 1 win 61440 
09:11:25.792369 D > C: . 34817:35329(512) ack 1 win 61440 
09:11:25.792369 D > C: . 35329:35841(512) ack 1 win 61440 
09:11:25.793345 D > C: . 36353:36865(512) ack 1 win 61440 
09:11:25.794321 C > D: . ack 35841 win 59904 

A sequence hole occurs because 35841:36353 has been dropped. 
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09:11:25.794321 D > C: . 36865:37377(512) ack 1 win 61440 
09:11:25.794321 C > D: . ack 35841 win 59904 
09:11:25.795297 D > C: . 37377:37889(512) ack 1 win 61440 
09:11:25.795297 C > D: . ack 35841 win 59904 
09:11:25.796273 C > D: . ack 35841 win 61440 
09:11:25.798225 D > C :  . 37889:38401(512) ack 1 win 61440 
09:11:25.799201 C > D: . ack 35841 win 61440 
09:11:25.807009 D > C: . 38401:38913(512) ack 1 win 61440 
09:11:25.807009 C > D: . ack 35841 win 61440 
(many additional lines omitted) 
09:11:25.884113 D > C: . 52737:53249(512) ack 1 win 61440 
09:11:25.884113 C > D: . ack 35841 win 61440 

Each additional, above-sequence packet C receives from D elicits a 
duplicate ACK for 35841. 

09:11:25.887041 D > C :  . 35841:36353(512) ack 1 win 61440 
09:11:25.887041 C > D: . ack 53249 win 44032 
D retransmits 35841:36353 and C acknowledges receipt of data all 
the way up to 53249. 

References 
This problem is documented in [Paxson971. 

How to detect 
Packet loss is common enough in the Internet that generally it is 
not difficult to find an Internet path that will result in some 
above-sequence packets arriving. A TCP that exhibits "Failure to 
retain . . . ! I  may not generate duplicate ACKs for these packets. 
However, some TCPs that do retain above-sequence data also do not 
generate duplicate ACKs, so failure to do so does not definitively 
identify the problem. Instead, the key observation is whether 
upon retransmission of the dropped packet, data that was 
previously above-sequence is acknowledged. 

Two considerations in detecting this problem using a packet trace 
are that it is easiest to do so with a trace made at the TCP 
receiver, in order to unambiguously determine which packets 
arrived successfully, and that such packets may still be correctly 
discarded if they arrive with checksum errors. The latter can be 
tested by capturing the entire packet contents and performing the 
IP and TCP checksum algorithms to verify their integrity; or by 
confirming that the packets arrive with the same checksum and 
contents as that with which they were sent, with a presumption 
that the sending TCP correctly calculates checksums for the 
packets it transmits. 
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It is considerably easier to verify that an implementation does 
NOT exhibit this problem. This can be done by recording a trace 
at the data sender, and observing that sometimes after a 
retransmission the receiver acknowledges a higher sequence number 
than just that which was retransmitted. 

How to fix 
If the root problem is that the implementation lacks buffer, then 
then unfortunately this requires significant work to fix. 
However, doing so is important, for reasons outlined above. 

2.6. 

Name of Problem 
Extra additive constant in congestion avoidance 

Classification 
Congestion control / performance 

Description 
RFC 1122 section 4.2.2.15 states that TCP MUST implement 
Jacobson's "congestion avoidance" algorithm [Jacobson881 , which 
calls for increasing the congestion window, cwnd, by: 

MSS * MSS / cwnd 

for each ACK received for new data [RFC2001]. This has the effect 
of increasing cwnd by approximately one segment in each round trip 
time . 
Some TCP implementations add an additional fraction of a segment 
(typically MSS/8) to cwnd for each ACK received for new data 
LStevens94, Wright951 : 

(MSS * MSS / cwnd) + MSS/8 
These implementations exhibit "Extra additive constant in 
congestion avoidance". 

Significance 
May be detrimental to performance even in completely uncongested 
environments (see Implications). 

In congested environments, may also be detrimental to the 
performance of other connections. 
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Implications 
The extra additive term allows a TCP to more aggressively open its 
congestion window (quadratic rather than linear increase). For 
congested networks, this can increase the loss rate experienced by 
all connections sharing a bottleneck with the aggressive TCP. 

However, even for completely uncongested networks, the extra 
additive term can lead to diminished performance, as follows. In 
congestion avoidance, a TCP sender probes the network path to 
determine its available capacity, which often equates to the 
number of buffers available at a bottleneck link. With linear 
congestion avoidance, the TCP only probes for sufficient capacity 
(buffer) to hold one extra packet per RTT. 

Thus, when it exceeds the available capacity, generally only one 
packet will be lost (since on the previous RTT it already found 
that the path could sustain a window with one less packet in 
flight). If the congestion window is sufficiently large, then the 
TCP will recover from this single loss using fast retransmission 
and avoid an expensive (in terms of performance) retransmission 
t imeout . 
However, when the additional additive term is used, then cwnd can 
increase by more than one packet per RTT, in which case the TCP 
probes more aggressively. If in the previous RTT it had reached 
the available capacity of the path, then the excess due to the 
extra increase will again be lost, but now this will result in 
multiple losses from the flight instead of a single loss. TCPs 
that do not utilize SACK [RFC2018] generally will not recover from 
multiple losses without incurring a retransmission timeout 
[Fa1196,Hoe96], significantly diminishing performance. 

Relevant RFCs 
RFC 1122 requires use of the "congestion avoidancell algorithm. 
RFC 2001 outlines the fast retransmit/fast recovery algorithms. 
RFC 2018 discusses the SACK option. 

Trace file demonstrating it 
Recorded using tcpdump running on the same FDDI LAN as host A .  
Host A is the sender and host €3 is the receiver. The connection 
establishment specified an MSS of 4,312 bytes and a window scale 
factor of 4. We omit the establishment and the first 2.5 MB of 
data transfer, as the problem is best demonstrated when the window 
has grown to a large value. At the beginning of the trace 
excerpt, the congestion window is 31 packets. The connection is 
never receiver-window limited, so we omit window advertisements 
from the trace for clarity. 
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1 1 : 4 2 : 0 7 . 6 9 7 9 5 1  B > A: . 
11 :42 :07 .699388  A > B: . 
11 :42 :07 .699962  A > B: . 
11 :42 :07 .700012  B > A: . 
11 :42 :07 .701081  A B: . 
11 :42 :07 .701656  A > B: . 
11 :42 :07 .701739  B A: . 
1 1 : 4 2 : 0 7 . 7 0 2 6 8 5  A > B: . 
1 1 : 4 2 : 0 7 . 7 0 3 2 5 7  A > B: . 
11 :42 :07 .703295  B > A: . 
11:42:07.704414 A > B: . 
11 :42 :07 .704989  A > B: . 
11 :42 :07 .705040  B > A: . 
11 :42 :07 .705935  A > B: . 
11 :42 :07 .706506  A > B: . 
11 :42 :07 .706544  B > A: . 
11 :42 :07 .707480  A > B :  . 
1 1 : 4 2 : 0 7 . 7 0 8 0 5 1  A > B: . 
11 :42 :07 .708088  B > A: . 
11 :42 :07 .709030  A > B: . 
11 :42 :07 .709604  A > B: . 
11 :42 :07 .710175  A > B: . 
11:42:07.710215 B > A: . 
1 1 : 4 2 : 0 7 . 7 1 0 7 9 9  A > B:  . 
11 :42 :07 .711368  A > B: . 
11:42:07.711405 B > A: . 
11 :42 :07 .712323  A > B: . 
11 :42 :07 .712898  A > B: . 
11:42:07.712938 B > A: . 
11 :42 :07 .713926  A > B: . 
1 1 : 4 2 : 0 7 . 7 1 4 5 0 1  A > B :  . 
11 :42 :07 .714547  B > A: . 
11 :42 :07 .715747  A > B: . 
11:42:07.716287 A > B: . 
11:42:07.716328 B > A: . 
11:42:07.717146 A > B: . 
11 :42 :07 .717717  A > B :  . 
11:42:07.717762 B > A: . 
11:42:07.718754 A > B: . 
1 1 : 4 2 : 0 7 . 7 1 9 3 3 1  A > B :  . 
11 :42 :07 .719906  A > B :  . 

a.ck 2383006 
2508054 :2512366 (4312) 
2512366 :2516678 (4312)  
ack 2391630 
2516678 :2520990 (4312)  
2520990 :2525302 (4312)  
ack 2400254 
2525302 :2529614 (4312) 
2529614 :2533926 (4312)  
ack 2408878 
2533926 :2538238 (4312)  
2538238 :2542550 (4312)  
ack 2417502 
2542550 :2546862 (4312)  
2546862 :2551174 (4312)  
ack 2426126 
2551174 : 2555486 (4312)  
2555486:2559798(4312)  
ack 2434750 
2559798:2564110(4312)  
2564110:2568422(4312)  
2568422:  2572734 (4312)  * 
ack 2443374 
2572734:  2577046 (4312)  
2577046:2581358(4312)  
ack 2451998 
2581358:2585670(4312)  
2585670:2589982(4312)  
ack 2460622 
2589982:2594294 (4312)  
2594294:2598606(4312)  
ack 2469246 
2598606:2602918 (4312)  
2602918:2607230(4312)  
ack 2477870 
2607230:2611542 (4312)  
2611542:2615854 (4312)  
ack 2486494 
2615854:2620166 (4312)  
2620166 :2624478 (4312)  
2624478:2628790 (4312)  * *  

11 :42 :07 .719958  B > A: . ack 2495118 
11 :42 :07 .720500  A > B:  . 2628790:2633102(4312)  
11:42:07.721080 A > B: . 2633102:2637414(4312)  
11:42:07.721739 B > A: . ack 2503742 
11:42:07.722348 A > B :  . 2637414:2641726(4312)  
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11:42:07.722918 A > B: . 2641726:2646038(4312) 
11:42:07.769248 B A: . ack 2512366 

The receiver's acknowledgment policy is one ACK per two packets 
received. Thus, for each ACK arriving at host A, two new packets 
are sent, except when cwnd increases due to congestion avoidance, 
in which case three new packets are sent. 

With an ack-every-two-packets policy, cwnd should only increase 
one MSS per 2 RTT. However, at the point marked I 1 * l r  the window 
increases after 7 ACKs have arrived, and then again at l l**tl  after 
6 more ACKs. 

While we do not have space to show the effect, this trace suffered 
from repeated timeout retransmissions due to multiple packet 
losses during a single RTT. 

Trace file demonstrating correct behavior 
Made using the same host and tracing setup as above, except now 
A ' s  TCP has been modified to remove the MSS/8 additive constant. 
Tcpdump reported 77 packet drops; the excerpt below is fully 
self-consistent so it is unlikely that any of these occurred 
during the excerpt. 

We again begin when cwnd is 31 packets (this occurs significantly 
later in the trace, because the congestion avoidance is now less 
aggressive with opening the window). 

14:22:21.236757 B > A :  . 
14:22:21.238192 A > B: . 
14:22:21.238770 A > B: . 
14:22:21.238821 B > A: . 
14:22:21.240158 A > B: . 
14:22:21.240738 A > B: . 
14:22:21.270422 B > A: . 
14:22:21.271883 A > B: . 
14:22:21.272458 A > B: . 
14:22:21.279099 B > A: . 
14:22:21.280539 A > B: . 
14:22:21.281118 A > B: . 
14:22:21.281183 B > A: . 
14:22:21.282348 A > B: . 
14:22:21.283029 A > B: . 
14:22:21.283089 B > A: . 
14:22:21.284213 A > B: . 
14:22:21.284779 A > B: . 
14:22:21.285976 B > A: . 
14:22:21.287465 A > B: . 

ack 5194679 
5319727~5324039 (4312) 
5324039 :5328351(4312) 
ack 5203303 
5328351:5332663 (4312) 
5332663 : 5336975 (4312) 
ack 5211927 
5336975:5341287 (4312) 
5341287:5345599 (4312) 
ack 5220551 
5345599: 5349911 (4312) 
5349911 :5354223 (4312) 
ack 5229175 
5354223 :5358535 (4312) 
5358535:5362847(4312) 
ack 5237799 
5362847 : 5367159 (4312) 
5367159 :5371471(4312) 
ack 5246423 
5371471:5375783 (4312) 

Paxson, et. al. Informational [Page 201 



RFC 2525 TCP Implementation Problems March 1 9 9 9  

14 :22 :21 .288036  A > B: . 
14:22:21.288073 B > A: . 
14 :22 :21 .289155  A > B: . 
14 :22 :21 .289725  A > B: . 
14:22:21.289762 B > A: . 
14 :22 :21 .291090  A > B: . 
14 :22 :21 .291662  A > B: . 
1 4 : 2 2 : 2 1 . 2 9 1 7 0 1  B > A: . 
14 :22 :21 .292870  A > B: . 
14 :22 :21 .293441  A B: . 
1 4 : 2 2 : 2 1 . 2 9 3 4 8 1  B > A: . 
14 :22 :21 .294476  A > B: . 
14 :22 :21 .295053  A > B: . 
14 :22 :21 .295106  B > A: . 
14:22:21.296306 A > B: . 
1 4 : 2 2 : 2 1 . 2 9 6 8 7 8  A > B: . 
14 :22 :21 .296917  B > A: . 
14 :22 :21 .297716  A > B: . 
14 :22 :21 .298285  A > B: . 
14 :22 :21 .298324  B > A: . 
14 :22 :21 .299413  A > B: . 
14:22:21.299986 A > B: . 
14:22:21.303696 B > A: . 
14 :22 :21 .305177  A > B: . 
1 4 : 2 2 : 2 1 . 3 0 5 7 5 5  A > B: . 
14 :22 :21 .308032  B > A: . 
14 :22 :21 .309525  A B: . 
14:22:21.310101 A > B: . 
14 :22 :21 .310144  B > A: . 
14 :22 :21 .311615  A > B: . 
14 :22 :21 .312198  A > B: . 
14 :22 :21 .341876  B > A: . 
1 4 : 2 2 : 2 1 . 3 4 3 4 5 1  A > B: . 
14 :22 :21 .343985  A > B: . 
14:22:21.350304 B > A: . 
14 :22 :21 .351852  A > B: . 
14:22:21.352430 A > B: . 
14 :22 :21 .352484  B > A: . 
14:22:21.353574 A > B :  . 
14 :22 :21 .354149  A > B: . 
14 :22 :21 .354205  B > A: . 
14 :22 :21 .355467  A > B: . 
14 :22 :21 .356039  A > B :  . 
1 4 : 2 2 : 2 1 . 3 5 7 3 6 1  B > A: . 
14:22:21.358855 A > B: . 
14 :22 :21 .359424  A > B: . 
14 :22 :21 .359465  B > A :  

5375783 :5380095 (4312)  
ack 5255047 
5380095 : 5384407 (4312)  
5384407:5388719(4312)  
ack 5263671  
5388719:  5393031  (4312)  
5393031:5397343 (4312)  
ack 5272295 
5397343 :I5401655 (4312)  
5401655:5405967 (4312)  
ack 5280919 
5405967:  5410279 (4312)  
5410279:  5414591  (4312)  
ack 5289543 
5 4 1 4 5 9 1  : 5418903 (4312)  
5418903 : 5423215 (4312)  
ack 5298167 
5423215:  5427527 (4312)  
5427527:  5431839 (4312)  
ack 5 3 0 6 7 9 1 .  
5431839 : 5 4 3 6 1 5 1  (4312)  
5436151:  5440463 (4312)  
ack 5315415 
5440463 : 5444775 (4312)  
5444775 : 5449087 (4312)  
ack 5324039 
5449087:5453399 (4312)  
5453399:  5457711  (4312)  
ack 5332663 ***  

5457711:  5462023 (4312)  
5462023 : 5466335 (4312)  

5466335:  5470647 (4312)  
5470647:5474959 (4312)  
ack 5349911  
5474959:5479271(4312)  
5479271 :  5483583 (4312)  
ack 5358535 
5483583 :5487895 (4312)  
5487895:5492207 (4312)  
ack 5367159 
5492207:5496519 (4312)  
5496519:5500831(4312)  
ack 5375783 
5 5 0 0 8 3 1  :5505143 (4312)  
5505143 :5509455 (4312)  
ack 5384407 

ack 5341287 
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14:22:21.360605 A > B: . 5509455:5513767(4312) 
14:22:21.361181 A > B: . 5513767:5518079(4312) 
14:22:21.361225 B > A: . ack 5393031 
14:22:21.362485 A > B: . 5518079:5522391(4312) 
14:22:21.363057 A > B: . 5522391:5526703(4312) 
14:22:21.363096 B > A: . ack 5401655 
14:22:21.364236 A > B: . 5526703:5531015(4312) 
14:22:21.364810 A > B: . 5531015:5535327(4312) 
14:22:21.364867 B > A: , ack 5410279 
14:22:21.365819 A > B: . 5535327:5539639(4312) 
14:22:21.366386 A > B: . 5539639:5543951(4312) 
14:22:21.366427 B > A: . ack 5418903 
14:22:21.367586 A > B: . 5543951:5548263(4312) 
14:22:21.368158 A > B: . 5548263:5552575(4312) 
14:22:21.368199 B > A: . ack 5427527 
14:22:21.369189 A > B: . 5552575:5556887(4312) 
14:22:21.369758 A > B: . 5556887:5561199(4312) 
14:22:21.370814 A > B: . 5561199:5565511(4312) 
14:22:21.371398 A > B: . 5565511:5569823(4312) 
14:22:21.376658 A > B: . 5569823:5574135(4312) 
14:22:21.377235 A > B: . 5574135:5578447(4312) 

14:22:21.380802 A > B: . 5578447:5582759(4312) 
14:22:21.381377 A > B: . 5582759:5587071(4312) 
14:22:21.381947 A > B: . 5587071:5591383(4312) **** 

14:22:21.369803 B > A: . ack 5436151 

14:22:21.375159 B > A :  . ack 5444775 

14:22:21.379303 B > A: . ack 5453399 

tr****rc marks the end of the first round trip. Note that cwnd did 
not increase (as evidenced by each ACK eliciting two new data 
packets). Only at r l * * * * I 1 ,  which comes near the end of the second 
round trip, does cwnd increase by one packet. 

This trace did not suffer any timeout retransmissions. It 
transferred the same amount of data as the first trace in about 
half as much time. This difference is repeatable between hosts A 
and B. 

References 
[Stevens941 and [Wright951 discuss this problem. The problem of 
Reno TCP failing to recover from multiple losses except via a 
retransmission timeout is discussed in [Fa1196,Hoe96]. 
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How to detect 
If source code is available, that is generally the easiest way to 
detect this problem. Search for each modification to the cwnd 
variable; (at least) one of these will be for congestion 
avoidance, and inspection of the related code should immediately 
identify the problem if present. 

The problem can also be detected by closely examining packet 
traces taken near the sender. During congestion avoidance, cwnd 
will increase by an additional segment upon the receipt of 
(typically) eight acknowledgements without a loss .  This increase 
is in addition to the one segment increase per round trip time (or 
two round trip times if the receiver is using delayed ACKs). 

Furthermore, graphs of the sequence number vs. time, taken from 
packet traces, are normally linear during congestion avoidance. 
When viewing packet traces of transfers from senders exhibiting 
this problem, the graphs appear quadratic instead of linear. 

Finally, the traces will show that, with sufficiently large 
windows, nearly every loss event results in a timeout. 

How to fix 
This problem may be corrected by removing the MSS/8" term from 
the congestion avoidance code that increases cwnd each time an ACK 
of new data is received. 

2 . 7 .  

Name of Problem 
Initial RTO too low 

Classification 
Performance 

Description 
When a TCP first begins transmitting data, it lacks the RTT 
measurements necessary to have computed an adaptive retransmission 
timeout (RTO). RFC 1122, 4.2.3.1, states that a TCP SHOULD 
initialize RTO to 3 seconds. A TCP that uses a lower value 
exhibits "Initial RTO too low1'. 

Significance 
In environments with large RTTs (where "largetf means any value 
larger than the initial RTO), TCPs will experience very poor 
performance. 
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Implications 
Whenever RTO e RTT, very poor performance can result as packets 
are unnecessarily retransmitted (because RTO will expire before an 
ACK for the packet can arrive) and the connection enters slow 
start and congestion avoidance. Generally, the algorithms for 
computing RTO avoid this problem by adding a positive term to the 
estimated RTT. However, when a connection first begins it must 
use some estimate for RTO, and if it picks a value less than RTT, 
the above problems will arise. 

Furthermore, when the initial RTO c RTT, it can take a long time 
for the TCP to correct the problem by adapting the RTT estimate, 
because the use of Karn's algorithm (mandated by RFC 1122, 
4.2.3.1) will discard many of the candidate RTT measurements made 
after the first timeout, since they will be measurements of 
retransmitted segments. 

Relevant RFCs 
RFC 1122 states that TCPs SHOULD initialize RTO to 3 seconds and 
MUST implement Karn's algorithm. 

Trace file demonstrating it 
The following trace file was taken using tcpdump at host A, the 
data sender. The advertised window and SYN options have been 
omitted for clarity. 

07:52:39.870301 A > B: S 2 7 8 6 3 3 3 6 9 6 : 2 7 8 6 3 3 3 6 9 6 ( 0 )  
07:52:40.548170 B > A: S 130240000:130240000(0) ack 2786333697 
07:52:40.561287 A > B: P 1:513(512) ack 1 
07:52:40.753466 A > B: . 1:513(512) ack 1 
07:52:41.133687 A > B: . 1:513(512) ack 1 
07:52:41.458529 B > A: . ack 513 
07:52:41.458686 A > B: . 513:1025(512) ack 1 
07:52:41.458797 A > B: P 1025:1537(512) ack 1 
07:52:41.541633 B > A: . ack 513 
07:52:41.703732 A > B: . 513:1025(512) ack 1 
07:52:42.044875 B > A: . ack 513 
07:52:42.173728 A > B: . 513:1025(512) ack 1 
07:52:42.330861 B > A: . ack 1537 
07:52:42.331129 A > B: . 1537:2049(512) ack 1 
07:52:42.331262 A > B: P 2049:2561(512) ack 1 
07:52:42.623673 A > B: . 1537:2049(512) ack 1 
07:52:42.683203 B > A: . ack 1537 
07:52:43.044029 B > A: . ack 1537 
07:52:43.193812 A > B: . 1537:2049(512) ack 1 
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Note from the SYN/SYN-ACK exchange, the RTT is over 600 msec. 
However, from the elapsed time between the third and fourth lines 
(the first packet being sent and then retransmitted), it is 
apparent the RTO was initialized to under 200 msec. The next line 
shows that t h i s  value has doubled to 400 msec (correct exponential 
backoff of RTO), but that still does not suffice to avoid an 
unnecessary retransmission. 

Finally,.an ACK from B arrives for the first segment. Later two 
more duplicate ACKs for 513 arrive, indicating that both the 
original and the two retransmissions arrived at B. (Indeed, a 
concurrent trace at B showed that no packets were lost during the 
entire connection). This ACK opens the congestion window to two 
packets, which are sent back-to-back, but at 07:52:41.703732 RTO 
again expires after a little over 200 msec, leading to an 
unnecessary retransmission, and the pattern repeats. By the end 
of the trace excerpt above, 1536 bytes have been successfully 
transmitted from A to B, over an interval of more than 2 seconds, 
reflecting terrible performance. 

Trace file demonstrating correct behavior 
The following trace file was taken using tcpdump at host C, the 
data sender. The advertised window and SYN options have been 
omitted for clarity. 

17:30:32.090299 C > D: S 2031744000 :2031744000(0 )  
17:30:32.900325 D > C: S 262737964:262737964(0) ack 2031744001 
17:30:32.900326 C > D: . ack 1 
17:30:32.910326 C > D: . 1:513(512) ack 1 
17:30:34.150355 D > C: . ack 513 
17:30:34.150356 C > D: . 513:1025(512) ack 1 
17:30:34.150357 C > D: . 1025:1537(512) ack 1 
17:30:35.170384 D > C: . ack 1025 
17:30:35.170385 C > D: . 1537:2049(512) ack 1 
17:30:35.170386 C > D: . 2049:2561(512) ack 1 
17:30:35.320385 D > C: . ack 1537 
17:30:35.320386 C > D: . 2561:3073(512) ack 1 
17:30:35.320387 C > D: . 3073:3585(512) ack 1 
17:30:35.730384 D > C: . ack 2049 

The initial SYN/SYN-ACK exchange shows that RTT is more than 800 
msec, and for some subsequent packets it rises above 1 second, but 
C's retransmit timer does not ever expire. 

References 
This problem is documented in EPaxson971. 
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2 .  

How to detect 
This problem is readily detected by inspecting a packet trace of 
the startup of a TCP connection made over a long-delay path. It 
can be diagnosed from either a sender-side or receiver-side trace. 
Long-delay paths can often be found by locating remote sites on 
other continents. 

How to fix 
As this problem arises from a faulty initialization, one hopes 
fixing it requires a one-line change to the TCP source code. 

8 .  

Name of Problem 
Failure of window deflation after loss recovery 

Classification 
Congestion control / performance 

Description 
The fast recovery algorithm allows TCP senders to continue to 
transmit new segments during loss recovery. First, fast 
retransmission is initiated after a TCP sender receives three 
duplicate ACKs. At this point, a retransmission is sent and cwnd 
is halved. The fast recovery algorithm then allows additional 
segments to be sent when sufficient additional duplicate ACKs 
arrive. Some implementations of fast recovery compute when to 
send additional segments by artificially incrementing cwnd, first 
by three segments to account for the three duplicate ACKs that 
triggered fast retransmission, and subsequently by 1 MSS for each 
new duplicate ACK that arrives. When cwnd allows, the sender 
transmits new data segments. 

When an ACK arrives that covers new data, cwnd is to be reduced by 
the amount by which it was artificially increased. However, some 
TCP implementations fail to "deflate" the window, causing an 
inappropriate amount of data to be sent into the network after 
recovery. One cause of this problem is the '!header prediction" 
code, which is used to handle incoming segments that require 
little work. In some implementations of TCP, the header 
prediction code does not check to make sure cwnd has not been 
artificially inflated, and therefore does not reduce the 
artificially increased cwnd when appropriate. 

Significance 
TCP senders that exhibit this problem will transmit a burst of 
data immediately after recovery, which can degrade performance, as 
well as network stability. Effectively, the sender does not 
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reduce the size of cwnd as much as it should (to half its value 
when loss was detected), if at all. This can harm the performance 
of the TCP connection itself, as well as competing TCP flows. 

Implications 
A TCP sender exhibiting this problem does not reduce cwnd 
appropriately in times of congestion, and therefore may contribute 
to congestive collapse. 

Relevant RFCs 
RFC 2001 outlines the fast retransmit/fast recovery algorithms. 
[Brakmo95] outlines this implementation problem and offers a fix. 

Trace file demonstrating it 
The following trace file was taken using tcpdump at host A, the 
data sender. The advertised window (which never changed) has been 
omitted for clarity, except for the first packet sent by each 
host. 

08:22:56.825635 
08 : 22 : 57.038794 
08:22:57.039279 
08:22:57.321876 
08:22:57.322356 
08:22:57.347128 
08:22:57.347572 
08:22:57,347782 
08:22:57.936393 
08:22:57.936864 
08:22:57.950802 
08:22:57.951246 
08:22:58.169422 
08 :22 : 58.638222 
08:22:58.643312 
08:22:58.643669 
08:22:58.936436 
08:22:59.002614 
08:22:59.003026 
08:22:59.682902 
08:22:59.683391 
08:22:59.683748 
08:22:59.684043 
08:22:59.684266 
08:22:59.684567 
08:22:59.684810 
08:22:59,685094 

A.7505 > B.7505: 
B.7505 > A.7505: 
A.7505 B.7505: 
B.7505 > 8.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
B.7505 > A.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
B.7505 > A.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 
A.7505 > B.7505: 

. 29697:30209 (512) ack 

. ack 27649 win 4096 

. 30209 :30721(512) ack 

. ack 28161 

. 30721:31233 (512) ack . ack 28673 

. 31233 :31745 (512) ack 

. 31745:32257 (512) ack 

. ack 29185 

. 32257:32769 (512) ack 

. ack 29697 win 4096 

. 32769 : 33281 (512) ack 

. ack 29697 
ack 29697 

. ack 29697 

. 29697:30209 (512) ack 

. ack 29697 

. ack 29697 

. 33281:33793 (512) ack 

. ack 33281 
P 33793 :34305 (512) ack 
P 34305: 34817 (512) ack 
P 34817:35329 (512) ack 
P 35329 : 35841 (512) ack 
P 35841:36353 (512) ack 
P 36353 :36865 (512) ack 
P 36865:37377(512) ack 

1 win 4608 

1 

1 

1 
1 

1 

1 

1 

1 

1 
1 ***  
1 
1 
1 
1 
1 
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The first 12 lines of the trace show incoming ACKs clocking out a 
window of data segments. At this point in the transfer, cwnd is 7 
segments. The next 4 lines of the trace show 3 duplicate ACKs 
arriving from the receiver, followed by a retransmission from the 
sender. At this point, cwnd is halved (to 3 segments) and 
artificially incremented by the three duplicate ACKs that have 
arrived, making cwnd 6 segments. The next two lines show 2 more 
duplicate ACKs arriving, each of which increases cwnd by 1 
segment. So, after these two duplicate ACKs arrive the cwnd is 8 
segments and the sender has permission to send 1 new segment 
(since there are 7 segments outstanding). The next line in the 
trace shows this new segment being transmitted. The next packet 
shown in the trace is an ACK from host B that covers the first 7 
outstanding segments (all but the new segment sent during 
recovery). This should cause cwnd to be reduced to 3 segments and 
2 segments to be transmitted (since there is already 1 outstanding 
segment in the network). However, as shown by the last 7 lines of 
the trace, cwnd is not reduced, causing a line-rate burst of 7 new 
segments . 

Trace file demonstrating correct behavior 
The trace would appear identical to the one above, only it would 
stop after the line marked because at this point host A 
would correctly reduce cwnd after recovery, allowing only 2 
segments to be transmitted, rather than producing a burst of 7 
segments. 

References 
This problem is documented and the performance implications 
analyzed in CBrakmo951. 

How to detect 
Failure of window deflation after loss recovery can be found by 
examining sender-side packet traces recorded during periods of 
moderate loss (so cwnd can grow large enough to allow for fast 
recovery when loss occurs). 

How to fix 
When this bug is caused by incorrect header prediction, the fix is 
to add a predicate to the header prediction test that checks to 
see whether cwnd is inflated; if so, the header prediction test 
fails and the usual ACK processing occurs, which (in this case) 
takes care to deflate the window. See EBrakmo951 for details. 

2 . 9 .  

Name of Problem 
Excessively short keepalive connection timeout 
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Classification 
Reliability 

Description 
Keep-alive is a mechanism for checking whether an idle connection 
is still alive. According to RFC 1122, keepalive should only be 
invoked in server applications that might otherwise hang 
indefinitely and consume resources unnecessarily if a client 
crashes or aborts a connection during a network failure. 

RFC 1122 also specifies that if a keep-alive mechanism is 
implemented it MUST NOT interpret failure to respond to any 
specific probe as a dead connection. The RFC does not specify a 
particular mechanism for timing out a connection when no response 
is received for keepalive probes. However, if the mechanism does 
not allow ample time for recovery from network congestion or 
delay, connections may be timed out unnecessarily. 

Significance 
In congested networks, can lead to unwarranted termination of 
connections. 

Implications 
It is possible for the network connection between two peer 
machines to become congested or to exhibit packet loss at the time 
that a keep-alive probe is sent on a connection. If the keep- 
alive mechanism does not allow sufficient time before dropping 
connections in the face of unacknowledged probes, connections may 
be dropped even when both peers of a connection are still alive. 

Relevant RFCs 
RFC 1122 specifies that the keep-alive mechanism may be provided. 
It does not specify a mechanism for determining dead connections 
when keepalive probes are not acknowledged. 

Trace file demonstrating it 
Made using the Orchestra tool at the peer of the machine using 
keep-alive. After connection establishment, incoming keep-alives 
were dropped by Orchestra to simulate a dead connection. 

22:11:12.040000 A > B: 22666019:O win 8192 datasz 4 SYN 
22:11:12.060000 B > A: 2496001:22666020 win 4096 datasz 4 SYN ACK 
22:11:12.130000 A > B: 22666020:2496002 win 8760 datasz 0 ACK 
(more than two hours elapse) 
00:23:00.680000 A > B: 22666019:2496002 win 8760 datasz 1 ACK 
00:23:01.770000 A B: 22666019:2496002 win 8760 datasz 1 ACK 
00:23:02.870000 A > B: 22666019:2496002 win 8760 datasz 1 ACK 
00:23.03.970000 A > B: 22666019:2496002 win 8760 datasz 1 ACK 
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00:23.05.070000 A > B: 22666019:2496002 win 8760 datasz 1 ACK 

The initial three packets are the SYN exchange for connection 
setup. About two hours later, the keepalive timer fires because 
the connection has been idle. Keepalive probes are transmitted a 
total of 5 times, with a 1 second spacing between probes, after 
which the connection is dropped. This is problematic because a 5 
second network outage at the time of the first probe results in 
the connection being killed. 

Trace file demonstrating correct behavior 
Made using the Orchestra tool at the peer of the machine using 
keep-alive. After connection establishment, incoming keep-alives 
were dropped by Orchestra to simulate a dead connection. 

16:01:52.130000 A > B: 
16:01:52.360000 B > A: 
16:01:52.410000 A > B: 
(two hours elapse) 
18:01:57.170000 A > B: 
18:03:12.220000 A > B: 
18:04:27.270000 A > B: 
18:05:42.320000 A > B: 
18:06:57.370000 A > B: 
18:08:12.420000 A > B: 
18:09:27.480000 A > B: 
18:10:43.290000 A > B: 
18:11:57.580000 A > B: 
18:13:12.630000 A > B: 

1804412929:O win 4096 datasz 4 SYN 
16512001:1804412930 win 4096 datasz 
1804412930:16512002 win 4096 datasz 

1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 
1804412929:16512002 win 4096 

datasz 
datasz 
datasz 
datasz 
datasz 
datasz 
datasz 
datasz 
datasz 
datasz 

4 SYN ACK 
0 ACK 

0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 ACK 
0 RST ACK 

In this trace, when the keep-alive timer expires, 9 keepalive 
probes are sent at 75 second intervals. 75 seconds after the last 
probe is sent, a final RST segment is sent indicating that the 
connection has been closed. This implementation waits about 11 
minutes before timing out the connection, while the first 
implementation shown allows only 5 seconds. 

References 
This problem is documented in [Dawson97]. 

How to detect 
For implementations manifesting this problem, it shows up on a 
packet trace after the keepalive timer fires if the peer machine 
receiving the keepalive does not respond. Usually the keepalive 
timer will fire at least two hours after keepalive is turned on, 
but it may be sooner if the timer value has been configured lower, 
or if the keepalive mechanism violates the specification (see 
Insufficient interval between keepalives problem). In this 
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example, suppressing the response of the peer 
was accomplished using the Orchestra toolkit, 
configured to drop packets. It could also ha 
creating a connection, turning on keepalive, 
network connection at the receiver machi 

How to fix 
This problem can be fixed by using a different method for 
out keepalives that allows a longer period of time to elapse 
before dropping the connection. For example, the algorithm for 
timing out on dropped data could be used. Another possibility is 
an algorithm such as the one shown in the trace above, which sends 
9 probes at 75 second intervals and then waits an additional 75 
seconds for a response before closing the connection. 

2.10. 

Name of Problem 
Failure to back off retransmission timeout 

Classification 
Congestion control / reliability 

Description 
The retransmission timeout is used to determine when a packet has  
been dropped in the network. When this timeout has expired 
without the arrival of an ACK, the segment is retransmitted. Each 
time a segment is retransmitted, the timeout is adjusted according 
to an exponential backoff algorithm, doubling each time. If a TCP 
fails to receive an ACK after numerous attempts at retransmitting 
the same segment, it terminates the connection. A TCP that fails 
to double its retransmission timeout upon repeated timeouts is 
said to exhibit IIFailure to back off retransmission timeoutrt. 

Significance 
Backing off the retransmission timer is a cornerstone of network 
stability in the presence of congestion. Consequently, this bug 
can have severe adverse affects in congested networks. It also 
affects TCP reliability in congested networks, as discussed in the 
next section. 

Imp 1 i c a t ions 
ible for the network connection between two TCP peers to 
gested or to exhibit packet loss at the time that a 

retransmission is sent on a connection. If the retransmission 
mechanism does not allow sufficient time before dropping 
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connections in the face of unacknowledged segments, connections 
may be dropped even when, by waiting longer, the connection could 
have continued. 

Relevant RFCs 
RFC 1122 specifies mandatory exponential backoff of the 
retransmission timeout, and the termination of connections after 
some period of time (at least 100 seconds). 

Trace file demonstrating it 
Made using tcpdump on an intermediate host: 

16:51:12.671727 A > B: S 510878852:510878852(0) win 16384 
16:51:12.672479 B > A: S 2392143687 :2392143687(0 )  

16:51:12.672581 A > B: ack 1 win 16384 
16:51:15.244171 A > B: P 1:3(2) ack 1 win 16384 
16:51:15.244933 B > A: . ack 3 win 17518 (DF) 

ack 510878853 win 16384 

<receiving host disconnected> 

16:51:19.381176 A > B: P 3:5(2) ack 1 win 
16:51:20.162016 A > B: P 3:5(2) ack 1 win 
16:51:21.161936 A > B: P 3:5(2) ack 1 win 
16:51:22.161914 A > B: P 3:5(2) ack 1 win 
16:51:23.161914 A > B: P 3:5(2) ack 1 win 
16:51:24.161879 A > B: P 3:5(2) ack 1 win 
16:51:25.161857 A > B: P 3:5(2) ack 1 win 
16:51:26.161836 A > B: P 3:5(2) ack 1 win 
16:51:27.161814 A > B: P 3:5(2) ack 1 win 
16:51:28.161791 A > B: P 3:5(2) ack 1 win 
16:51:29.161769 A > B: P 3:5(2) ack 1 win 
16:51:30.161750 A > B: P 3:5(2) ack 1 win 
16:51:31.161727 A > B: P 3:5(2) ack 1 win 

16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 
16384 

16:51:32.161701 A > B: R 5:5(0) ack 1 win 16384 

The initial three packets are the SYN exchange for connection 
setup, then a single data packet, to verify that data can be 
transferred. Then the connection to the destination host was 
disconnected, and more data sent. Retransmissions occur every 
second for 12 seconds, and then the connection is terminated with 
a RST. This is problematic because a 12 second pause in 
connectivity could result in the termination of a connection. 

Trace file demonstrating correct behavior 
Again, a tcpdump taken from a third host: 
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16:59:05.398301 A > B: S 2503324757:2503324757(0)  win 16384 
16:59:05.399673 B > A: S 2492674648 :2492674648(0 )  

16:59:05.399866 A > B: . ack 1 win 17520 
16:59:06.538107 A > B: P 1:3(2) ack 1 win 17520 
16:59:06.540977 B > A: . ack 3 win 17518 (DF) 

ack 2503324758 win 16384 

creceiving host disconnected> 

16:59:13.121542 A > B: P 3:5(2) ack 1 win 17520 
16:59:14.010928 A > B: P 3:5(2) ack 1 win 17520 
16:59:16.010979 A > B: P 3:5(2) ack 1 win 17520 
16:59:20.011229 A > B: P 3:5(2) ack 1 win 17520 
16:59:28.011896 A > B: P 3:5(2) ack 1 win 17520 
16:59:44.013200 A > B: P 3:5(2) ack 1 win 17520 
17:00:16.015766 A > B: P 3:5(2) ack 1 win 17520 
17:01:20.021308 A > B: P 3:5(2) ack 1 win 17520 
17:02:24.027752 A > B: P 3:5(2) ack 1 win 17520 
17:03:28.034569 A > B: P 3:5(2) ack 1 win 17520 
17:04:32.041567 A > B: P 3:5(2) ack 1 win 17520 
17:05:36.048264 A > B: P 3:5(2) ack 1 win 17520 
17:06:40.054900 A > B: P 3:5(2) ack 1 win 17520 

17:07:44.061306 A > B: R 5 : 5 ( 0 )  ack 1 win 17520 

In this trace, when the retransmission timer expires, 12 
retransmissions are sent at exponentially-increasing intervals, 
until the interval value reaches 64 seconds, at which time the 
interval stops growing. 64 seconds after the last retransmission, 
a final RST segment is sent indicating that the connection has 
been closed. This implementation waits about 9 minutes before 
timing out the connection, while the first implementation shown 
allows only 12 seconds. 

References 
None known. 

How to detect 
A simple transfer can be easily interrupted by disconnecting the 
receiving host from the network. tcpdump or another appropriate 
tool should show the retransmissions being sent. Several trials 
in a low-rtt environment may be required to demonstrate the bug. 

How to fix 
For one of the implementations studied, this problem seemed to be 
the result of an error introduced with the addition of the 
Brakmo-Peterson RTO algorithm CBrakmo951, which can return a value 
of zero where the older Jacobson algorithm always returns a 
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positive value. Brakmo and Peterson specified an additional step 
of min(rtt + 2, RTO) to avoid problems with this. Unfortunately, 
in the implementation this step was omitted when calculating the 
exponential backoff for the RTO. This results in an RTO of 0 
seconds being multiplied by the backoff, yielding again zero, and 
then being subjected to a later MAX operation that increases it to 
1 second, regardless of the backoff factor. 

A similar TCP persist failure has the same cause. 

2.11. 

Name of Problem 
Insufficient interval between keepalives 

Classification 
Reliability 

Description 
Keep-alive is a mechanism for checking whether an idle connection 
is still alive. According to RFC 1122, keep-alive may be included 
in an implementation. If it is included, the interval between 
keep-alive packets MUST be configurable, and MUST default to no 
less than two hours. 

Significance 
In congested networks, can lead to unwarranted termination of 
connections. 

Implications 
According to RFC 1122, keep-alive is not required of 
implementations because it could: (1) cause perfectly good 
connections to break during transient Internet failures; (2) 
consume unnecessary bandwidth (!'if no one is using the connection, 
who cares if it is still good?I1); and (3) cost money for an 
Internet path that charges for packets. Regarding this last 
point, we note that in addition the presence of dial-on-demand 
links in the route can greatly magnify the cost penalty of excess 
keepalives, potentially forcing a full-time connection on a link 
that would otherwise only be connected a few minutes a day. 

If keepalive is provided the RFC states that the required inter- 
keepalive distance MUST default to no less than two hours. If it 
does not, the probability of connections breaking increases, the 
bandwidth used due to keepalives increases, and cost increases 
over paths which charge per packet. 
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Re levant R F C s  
RFC 1122 specifies that the keep-alive mechanism may be provided. 
It also specifies the two hour minimum for the default interval 
between keepalive probes. 

Trace file demonstrating it 
Made using the Orchestra tool at the peer of the machine using 
keep-alive. Machine A was configured to use default settings for 
the keepalive timer. 

11:36:32.910000 A > B:  3288354305:O win 28672 datasz 4 SYN 
11:36:32.930000 B > A: 896001:3288354306 win 4096 datasz 4 SYN ACK 
11:36:32.950000 A > B:  3288354306:896002 win 28672 datasz 0 ACK 

11:50:01.190000 A > B:  3288354305:896002 win 28672 datasz 0 ACK 
11:50:01.210000 B > A: 896002:3288354306 win 4096 datasz 0 ACK 

12:03:29.410000 A > B :  3288354305:896002 win 28672 datasz 0 ACK 
12:03:29.430000 B > A: 896002:3288354306 win 4096 datasz 0 ACK 

12:16:57.630000 A > B: 3288354305:896002 win 28672 datasz 0 ACK 
12:16:57.650000 B > A: 896002:3288354306 win 4096 datasz 0 ACK 

12:30:25.850000 A > B:  3288354305:896002 win 28672 datasz 0 ACK 
12:30:25.870000 B > A: 896002:3288354306 win 4096 datasz 0 ACK 

12:43:54.070000 A > €3: 3288354305:896002 win 28672 datasz 0 ACK 
12:43:54.090000 B > A: 896002:3288354306 win 4096 datasz 0 ACK 

The initial three packets are the SYN exchange for connection 
setup. About 13 minutes later, the keepalive timer fires because 
the connection is idle. The keepalive is acknowledged, and the 
timer fires again in about 13 more minutes. This behavior 
continues indefinitely until the connection is closed, and is a 
violation of the specification. 

Trace file demonstrating correct behavior 
Made using the Orchestra tool at the peer of the machine using 
keep-alive. Machine A was configured to use default settings for 
the keepalive timer. 

17:37:2’0.500000 A > B: 34155521:O win 4096 datasz 4 SYN 
17:37:20.520000 B > A: 6272001:34155522 win 4096 datasz 4 SYN ACK 
17:37:20.540000 A > B: 34155522:6272002 win 4096 datasz 0 ACK 

19:37:25.430000 A > B :  34155521:6272002 win 4096 datasz 0 ACK 
19:37:25.450000 B > A: 6272002:34155522 win 4096 datasz 0 ACK 

Paxson, et. al. Informational [Page 351 



RFC 2525 TCP Implementation Problems March 1999 

21:37:30.560000 A > B: 34155521:6272002 win 4096 datasz 0 ACK 
21:37:30.570000 B > A: 6272002:34155522 win 4096 datasz 0 ACK 

23:37:35.580000 A > 8: 34155521:6272002 win 4096 datasz 0 ACK 
23:37:35.600000 B > A: 6272002:34155522 win 4096 datasz 0 ACK 

01:37:40.620000 A > B: 34155521:6272002 win 4096 datasz 0 ACK 
01:37:40.640000 B > A: 6272002:34155522 win 4096 datasz 0 ACK 

03:37:45.590000 A > B: 34155521:6272002 win 4096 datasz 0 ACK 
03:37:45.610000 B A: 6272002:34155522 win 4096 datasz 0 ACK 

The initial three packets are the SYN exchange for connection 
setup. Just over two hours later, the keepalive timer fires 
because the connection is idle. The keepalive is acknowledged, 
and the timer fires again just over two hours later. This 
behavior continues indefinitely until the connection is closed. 

References 
This problem is documented in [Dawson971. 

How to detect 
For implementations manifesting this problem, it shows up on a 
packet trace. If the connection is left idle, the keepalive 
probes will arrive closer together than the two hour minimum. 

2.12. 

Name of Problem 
Window probe deadlock 

Classification 
Reliability 

Description 
When an application reads a single byte from a full window, the 
window should not be updated, in order to avoid Silly Window 
Syndrome (SWS; see [RFC813]). If the remote peer uses a single 
byte of data to probe the window, that byte can be accepted into 
the buffer. In some implementations, at this point a negative 
argument to a signed comparison causes all further new data to be 
considered outside the window; consequently, it is discarded 
(after sending an ACK to resynchronize). These discards include 
the ACKs for the data packets sent by the local TCP, so the TCP 
will consider the data unacknowledged. 
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Consequently, the application may be unable t 
new data to the remote peer, because it has e 
buffer available to its local TCP, and buffer 
freed because incoming ACKs that would do so 
If the application does not read any more data, which may happen 
due to its failure to complete such sends, then deadlock results. 

It’s relatively rare for applications to use TCP in a manner that 
can exercise this problem. Most applications only transmit bulk 
data if they know the other end is prepared to receive the data. 
However, if a client fails to consume data, putting the server in 
persist mode, and then consumes a small amount of data, it can 
mistakenly compute a negative window. At this point the client 
will discard all further packets from the server, including ACKs 
of the clientrs own data, since they are not inside the 
(impossibly-sized) window. If subsequently the client consumes 
enough data to then send a window update to the server, the 
situation will be rectified. That is, this situation can only 
happen if the client consumes 1 < N e MSS bytes, so as not to 
cause a window update, and then starts its own transmission 
towards the server of more than a window’s worth of data. 

Significance 

Implications 
TCP connections will hang and 

Relevant RFCs 
RFC 793 describes zero window 
Window Syndrome. 

eventually time out. 

probing. RFC 813 describes Silly 

Trace file demonstrating it 
Trace made from a version of tcpdump modified to print out the 
sequence number attached to an ACK even if it’s dataless. An 
unmodified tcpdump would not print seq:seq(O); however, for this 
bug, the sequence number in the ACK is important for unambiguously 
determining how the TCP is behaving. 

[ Normal connection startup and data transmission from B to A. 
Options, including MSS of 16344 in both directions, omitted 
for clarity. 1 

16:07:32.327616-A > B: S 65360807:65360807(0) win 8192 
16:07:32.327304 B > A: S 65488807:65488807(0) ack 65360808 win 57344 
16:07:32.327425 A > B: . 1:1(0) ack 1 win 57344 
16:07:32.345732 B > A: P 1:2049(2048) ack 1 win 57344 
16:07:32.347013 B > A: P 2049:16385(14336) ack 1 win 57344 
16:07:32.347550 B > A: P 16385:30721(14336) ack 1 win 57344 
16:07:32.348683 B > A: P 30721:45057(14336) ack 1 win 57344 
16:07:32.467286 A > B: . 1:1(0) ack 45057 win 12288 
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16:07:32.467854 B > A: P 45057:57345(12288) ack 1 win 57344 

[ B fills up A ' s  offered window 1 
16:07:32.667276 A > B: . 1:1(0) ack 57345 win 0 
E B probes A ' s  window with a single byte I 
16:07:37.467438 B > A: . 57345:57346(1) ack 1 win 57344 
[ A resynchronizes without accepting the byte 1 
16:07:37.467678 A > B: . 1:1(0) ack 57345 win 0 
[ B probes A ' s  window again I 
16:07:45.467438 B > A: . 57345:57346(1) ack 1 win 57344 
[ A resynchronizes and accepts the byte (per the ack field) 3 
16:07:45.667250 A > B: . 1:1(0) ack 57346 win 0 
[ The application on A has started generating data. The first 

16:07:51.358459 A > B: P 1:2049(2048) ack 57346 win 0 
packet A sends is small due to a memory allocation bug. 1 

[ B acks A ' s  first packet 1 
16:07:51.467239 B > A: . 57346:57346(0) ack 2049 win 57344 

[ This looks as though A accepted B ' s  ACK and is sending 
another packet in response to it. In fact, A is trying 
to resynchronize with B, and happens to have data to send 
and can send it because the first small packet didn't use 
up cwnd. 3 

16:07:51.467698 A > B: . 2049:14337(12288) ack 57346 win 0 
[ B acks all of the data that A has sent I 
16:07:51.667283 B > A: . 57346:57346(0) ack 14337 win 57344 
[ A tries to resynchronize. Notice that by the packets 
seen on the network, A and B *are* in fact synchronized; 
A only thinks that they aren't. I 

16:07:51.667477 A > B: . 14337:14337(0) ack 57346 win 0 
[ A ' s  retransmit timer fires, and B acks all of the data. 

16:07:52.467682 A > B: . 1:14337(14336) ack 57346 win 0 
16:07:52.468166 B > A: . 57346:57346(0) ack 14337 win 57344 
16:07:52.468248 A > B: . 14337:14337(0) ack 57346 win 0 

A once again tries to resynchronize. I 

[ A ' s  retransmit timer fires again, and B acks all of the data. 

16:07:55.467684 A > 3: . 1:14337(14336) ack 57346 win 0 
A once again tries to resynchronize. I 
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16:07:55.468172 B > A: . 57346:57346(0) ack 14337 win 57344 
16:07:55.468254 A > B: . 14337:14337(0) ack 57346 win 0 
Trace file demonstrating correct behavior 

Made between the same two hosts after applying the bug fix 
mentioned below (and using the same modified tcpdump). 

[ Connection starts up with data transmission from B to A. 
Note that due to a separate bug (the fact that A and B 
are communicating over a loopback driver), B erroneously 
skips slow start. 3 

17:38:09.510854 A > B: S 3110066585:3110066585(0)  win 16384 
17:38:09.510926 B A: S 3110174850 :3110174850(0 )  

ack 3110066586 win 57344 
17:38:09.510953 A > B: . 1:1(0) ack 1 win 57344 
17:38:09.512956 B > A: P 1:2049(2048) ack 1 win 57344 
17:38:09.513222 B > A: P 2049:16385(14336) ack 1 win 57344 
17:38:09.513428 B > A: P 16385:30721(14336) ack 1 win 57344 
17:38:09.513638 B > A: P 30721:45057(14336) ack 1 win 57344 
17:38:09.519531 A > B: . 1:1(0) ack 45057 win 12288 
17:38:09.519638 B > A: P 45057:57345(12288) ack 1 win 57344 

[ B fills up A ' s  offered window I 
17:38:09.719526 A > B: . 1:1(0) ack 57345 win 0 
[ B probes A ' s  window with a single byte. A resynchronizes 

17:38:14.499661 B > A: , 57345:57346(1) ack 1 win 57344 
17:38:14.499724 A > B: . 1:1(0) ack 57345 win 0 
without accepting the byte 1 

[ B probes A ' s  window again. A resynchronizes and accepts 

17:38:19.499764 B > A: . 57345:57346(1) ack 1 win 57344 
17:38:19.519731 A > B: . 1:1(0) ack 57346 win 0 
the byte, as indicated by the ack field 3 

[ B probes A ' s  window with a single byte. A resynchronizes 

17:38:24.499865 B > A: . 57346:57347(1) ack 1 win 57344 
17:38:24.499934 A > B: . 1:1(0) ack 57346 win 0 
without accepting the byte 1 

[ The application on A has started generating data. 
B acks A ' s  data and A accepts the ACKs and the 
data transfer continues 1 

17:38:28.530265 A > B: P 1:2049(2048) ack 57346 win 0 
17:38:28.719914 B > A: . 57346:57346(0) ack 2049 win 57344 
17:38:28.720023 A > B: . 2049:16385(14336) ack 57346 win 0 
17:38:28.720089 A > B: . 16385:30721(14336) ack 57346 win 0 
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17:38:28.720370 B 1 A: . 57346:57346(0) ack 30721 win 57344 
17:38:28.720462 A > B: . 30721:45057(14336) ack 57346 win 0 
17:38:28.720526 A B: P 45057:59393(14336) ack 57346 win 0 
17:38:28.720824 A > B: P 59393:73729(14336) ack 57346 win 0 
17:38:28.721124 B 4 A: . 57346:57346(0) ack 73729 win 47104 
17:38:28.721198 A > B: P 73729:88065(14336) ack 57346 win 0 
17:38:28.721379 A > B: P 88065:102401(14336) ack 57346 win 0 

17:38:28.721557 A > B: P 102401:116737(14336) ack 57346 win 0 
17:38:28.721863 B > A: . 57346:57346(0) ack 116737 win 36864 
References 

None known. 

How to detect 
Initiate a connection from a client to a server. Have the server 
continuously send data until its buffers have been full for long 
enough to exhaust the window. Next, have the client read 1 byte 
and then delay fo r  long enough that the server TCP sends a window 
probe. Now have the client start sending data. At this point, if 
it ignores the server's ACKs, then the client's TCP suffers from 
the problem. 

How to fix 
In one implementation known to exhibit the problem (derived from 
4.3-Reno) , the problem was introduced when the macro MAX()  was 
replaced by the function call max0 for computing the amount of 
space in the receive window: 

tp->rcv wnd = max(win, (int) (tp->rcv-adv - tp->rcv nxt) 1 ; - - 

When data has been received into a window beyond what has been 
advertised to the other side, rcv nxt > rcv adv, making this 
negative. It's clear from the (int) cast tEat this is intended, 
but the unsigned max() function sign-extends so the negative 
number is "larger". The fix is to change max0 to imax0 : 

tp->rcv - wnd = imax(win, (int) (tp->rcv - adv - tp->rcv-nxt) f ; 

4.3-Tahoe and before did not have this bug, since it used the 
macro M A X 0  for this calculation. 

2.13. 

Name of Problem 
Stretch ACK violation 
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Classification 
Congestion Control/Performance 

Description 
To improve efficiency (both computer and network) a data receiver 
may refrain from sending an ACK for each incoming segment, 
according to [RFC1122]. However, an ACK should not be delayed an 
inordinate amount of time. Specifically, ACKs SHOULD be sent for 
every second full-sized segment that arrives. If a second full- 
sized segment does not arrive within a given timeout (of no more 
than 0 . 5  seconds), an ACK should be transmitted, according to 
CRFC11221. A TCP receiver which does not generate an ACK for 
every second full-sized segment exhibits a "Stretch ACK 
Violation". 

Significance 
TCP receivers exhibiting this behavior will cause TCP senders to 
generate burstier traffic, which can degrade performance in 
congested environments. In addition, generating fewer ACKs 
increases the amount of time needed by the slow start algorithm to 
open the congestion window to an appropriate point, which 
diminishes performance in environments with large bandwidth-delay 
products. Finally, generating fewer ACKs may cause needless 
retransmission timeouts in lossy environments, as it increases the 
possibility that an entire window of ACKs is lost, forcing a 
retransmission timeout. 

Implications 
When not in loss recovery, every ACK received by a TCP sender 
triggers the transmission of new data segments. The burst size is 
determined by the number of previously unacknowledged segments 
each ACK covers. Therefore, a TCP receiver ack'ing more than 2 
segments at a time causes the sending TCP to generate a larger 
burst of traffic upon receipt of the ACK. This large burst of 
traffic can overwhelm an intervening gateway, leading to higher 
drop rates for both the connection and other connections passing 
through the congested gateway. 

In addition, the TCP slow start algorithm increases the congestion 
window by 1 segment for each ACK received. Therefore, increasing 
the ACK interval (thus decreasing the rate at which ACKs are 
transmitted) increases the amount of time it takes slow start to 
increase the congestion window to an appropriate operating point, 
and the connection consequently suffers from reduced performance. 
This is especially true fo r  connections using large windows. 

Relevant RFCs 
RFC 1122 outlines delayed ACKs as a recommended mechanism. 
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Trace file demonstrating it 
Trace file taken using tcpdump at host B, the data receiver (and 
ACK originator). The advertised window (which never changed) and 
timestamp options have been omitted for clarity, except for the 
first packet sent by A: 

12:09:24.820187 A.1174 > B.3999: 
win 33580 cnop,nop,timestamp 

12:09:24.824147 A.1174 > B.3999: 
12:09:24.832034 A.1174 > B.3999: 
12:09:24.832222 B.3999 > A.1174: 
12:09:24.934837 A.1174 > B.3999: 
12:09:24.942721 A.1174 > B.3999: 
12:09:24.950605 A.1174 > B.3999: 
12:09:24.950797 B.3999 > A.1174: 
12:09:24.958488 A.1174 > B.3999: 
12:09:25.052330 A.1174 > B.3999: 
12:09:25.060216 A.1174 > B.3999: 
12:09:25.060405 B.3999 > A.1174: 

. 2049:3497(1448) ack 1 
2249877 2249914> [tos Ox81 
. 3497:4945(1448) ack 1 
. 4945:6393(1448) ack 1 
. ack 6393 
. 6393:7841(1448) ack 1 
. 7841:9289(1448) ack 1 
. 9289:10737(1448) ack 1 
. ack 10737 
. 10737:12185(1448) ack 1 
. 12185:13633(1448) ack 1 
. 13633:15081(1448) ack 1 
. ack 15081 

This portion of the trace clearly shows that the receiver (host B) 
sends an ACK for every third full sized packet received. Further 
investigation of this implementation found that the cause of the 
increased ACK interval was the TCP options being used. The 
implementation sent an ACK after it was holding 2*MSS worth of 
unacknowledged data. In the above case, the MSS is 1460 bytes so 
the receiver transmits an ACK after it is holding at least 2920 
bytes of unacknowledged data. However, the length of the TCP 
options being used LRFC13231 took 12 bytes away from the data 
portion of each packet. This produced packets containing 1448 
bytes of data. But the additional bytes used by the options in 
the header were not taken into account when determining when to 
trigger an ACK. Therefore, it took 3 data segments before the 
data receiver was holding enough unacknowledged data (>=  2*MSS, or 
2920 bytes in the above example) to transmit an ACK. 

Trace file demonstrating correct behavior 
Trace file taken using tcpdump at host B, the data receiver (and 
ACK originator), again with window and timestamp information 
omitted except for the first packet: 

12:06:53.627320 A.1172 > B.3999: . 1449:2897(1448) ack 1 
12:06:53.634773 A.1172 > B.3999: . 2897:4345(1448) ack 1 
12:06:53.634961 B.3999 > A.1172: . ack 4345 
12:06:53.737326 A.1172 > B.3999: . 4345:5793(1448) ack 1 
12:06:53.744401 A.1172 > B.3999: . 5793:7241(1448) ack 1 
12:06:53.744592 B.3999 > A.1172: . ack 7241 

win 33580 cnop,nop,timestamp 2249575 2249612> [tos Ox81 
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2. 

12:06:53.752287 A.1172 > B.3999: . 7241:8689(1448) ack 1 
12:06:53.847332 A.1172 > B.3999: . 8689:10137(1448) ack 1 
12:06:53.847525 B.3999 > A.1172: . ack 10137 

This trace shows the TCP receiver (host B) ack'ing every second 
full-sized packet, according to [RFC1122]. This is the same 
implementation shown above, with slight modifications that allow 
the receiver to take the length of the options into account when 
deciding when to transmit an ACK. 

References 
This problem is documented in [Allman971 and [Paxson971. 

How to detect 
Stretch ACK violations show up immediately in receiver-side packet 
traces of bulk transfers, as shown above. However, packet traces 
made on the sender side of the TCP connection may lead to 
ambiguities when diagnosing this problem due to the possibility of 
lost ACKs. 

14. 

Name of Problem 
Retransmission sends multiple packets 

Classification 
Congestion control 

Description 
When a TCP retransmits a segment due to a timeout expiration or 
beginning a fast retransmission sequence, it should only transmit 
a single segment. A TCP that transmits more than one segment 
exhibits "Retransmission Sends Multiple Packets". 

Instances of this problem have been known to occur due to 
miscomputations involving the use of TCP options. TCP options 
increase the TCP header beyond its usual size of 20 bytes. The 
total size of header must be taken into account when 
retransmitting a packet. If a TCP sender does not account fo r  the 
length of the TCP options when determining how much data to 
retransmit, it will send too much data to fit into a single 
packet. In this case, the correct retransmission will be followed 
by a short segment (tinygram) containing data that may not need to 
be retransmitted. 

A specific case is a TCP using the RFC 1323 timestamp option, 
which adds 12 bytes to the standard 20-byte TCP header. On 
retransmission of a packet, the 12 byte option is incorrectly 
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interpreted as part of the data portion of the segment. A 
standard TCP header and a new 12-byte option is added to the data, 
which yields a transmission of 12 bytes more data than contained 
in the original segment. This overflow causes a smaller packet, 
with 12 data bytes, to be transmitted. 

Significance 
This problem is somewhat serious for congested environments 
because the TCP implementation injects more packets into the 
network than is appropriate. However, since a tinygram is only 
sent in response to a fast retransmit or a timeout, it does not 
effect the sustained sending rate. 

Implications 
A TCP exhibiting this behavior is stressing the network with more 
traffic than appropriate, and stressing routers by increasing the 
number of packets they must process. , The redundant tinygram will 
also elicit a duplicate ACK from the receiver, resulting in yet 
another unnecessary transmission. 

Relevant RFCs 
RFC 1122 requires use of slow start after loss; RFC 2001 
explicates slow start; RFC 1323 describes the timestamp option 
that has been observed to lead to some implementations exhibiting 
this problem. 

Trace file demonstrating it 
Made using tcpdump recording at a machine on the same subnet as 
Host A. Host A is the sender and Host B is the receiver. The 
advertised window and timestamp options have been omitted for 
clarity, except for the first segment sent by host A. In 
addition, portions of the trace file not pertaining to the packet 
in question have been removed (missing packets are denoted by 
'I [ .  . .I in the trace) . 

11:55:22.701668 A > B: . 7361:7821(460) ack 1 
11:55:22.702109 A B: . 7821:8281(460) ack 1 
C.. .I 

win 49324 <nop,nop,timestamp 3485348 3485113> 

11:55:23.112405 B > A: . 
11:55:23.113069 A > B: . 
11:55:23.113511 A > B: . 
11:55:23.333077 B > A: . 
11:55:23.336860 B > A: . 
11:55:23.340638 B > A: . 
11:55:23.341290 A > B: . 
11:55:23.341317 A > B: . 

ack 7821 
12421: 12881 (460) ack 1 
12881: 13341 (460) ack 1 
ack 7821 
ack 7821 
ack 7821 
7821 : 8281 (460) ack 1 
8281:8293(12) ack 1 
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11:55:23.498242 B > A: . ack 7821 
11:55:23.506850 B > A: . ack 7821 
11:55:23.510630 B > A: . ack 7821 

11:55:23.746649 B > A: . ack 10581 
The second line of the above trace shows the original transmission 
of a segment which is later dropped. After 3 duplicate ACKs, line 
9 of the trace shows the dropped packet (7821:8281), with a 460- 
byte payload, being retransmitted. Immediately following this 
retransmission, a packet with a 12-byte payload is unnecessarily 
sent. 

Trace file demonstrating correct behavior 
The trace file would be identical to the one above, with a single 
line : 

11:55:23.341317 A > B: . 8281:8293(12) ack 1 
omitted. 

References 
EBrakmo951 

How to detect 
This problem can be detected by examining a packet trace of the 
TCP connections of a machine using TCP options, during which a 
packet is retransmitted. 

2. 15. 

Name of Problem 
Failure to send FIN notification promptly 

Classification 
Performance 

Description 
When an application closes a connection, the corresponding TCP 
should send the FIN notification promptly to its peer (unless 
prevented by the congestion window). If a TCP implementation 
delays in sending the FIN notification, for example due to waiting 
until unacknowledged data has been acknowledged, then it is said 
to exhibit "Failure to send FIN notification promptly". 
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Also, while not strictly required, FIN segments should include the 
PSH flag to ensure expedited delivery of any pending data at the 
receiver. 

Significance 
The greatest impact occurs for short-lived connections, since for 
these the additional time required to close the connection 
introduces the greatest relative delay. 

The additional time can be significant in the common case of the 
sender waiting for an ACK that is delayed by the receiver. 

Implications 
Can diminish total throughput as seen at the application layer, 
because connection termination takes longer to complete. 

Re levant RFCs 
RFC 793 indicates that a receiver should treat an incoming FIN 
flag as implying the push function. 

Trace file demonstrating it 
Made using tcpdump (no losses reported by the packet filter). 

10:04:38.68 A > B: S 1031850376:1031850376(0) win 4096 
cmss 1460, wscale 0,  eol> (DF) 

10:04:38.71 B > A: S 596916473:596916473(0) ack 1031850377 
win 8760 cmss 1460> (DF) 

10:04:38.73 A > B: . ack 1 win 4096 (DF) 
10:04:41.98 A > B: P 1:4(3) ack 1 win 4096 (DF) 
10:04:42.15 B > A: . ack 4 win 8757 (DF) 
10:04:42.23 A > B: P 4:7(3) ack 1 win 4096 (DF) 
10:04:42.25 B > A: P 1:11(10) ack 7 win 8754 (DF) 
10:04:42.32 A > B: . ack 11 win 4096 (DF) 
10:04:42.33 B > A: P 11:51(40) ack 7 win 8754 (DF) 
10:04:42.51 A > B: . ack 51 win 4096 (DF) 
10:04:42.53 B > A: F 51:51(0) ack 7 win 8754 (DF) 
10:04:42.56 A > B: FP 7:7(0) ack 52 win 4096 (DF) 
10:04:42.58 B > A: . ack 8 win 8754 (DF) 

Machine B in the trace above does not send out a FIN notification 
promptly if there is any data outstanding. It instead waits for 
all unacknowledged data to be acknowledged before sending the FIN 
segment. The connection was closed at 10:04.42.33 after 
requesting 40 bytes to be sent. However, the FIN notification 
isn't sent until 10:04.42.51, after the (delayed) acknowledgement 
of the 40 bytes of data. 
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Trace file demonstrating correct behavior 

10:27:53.85 C > D: S 419744533:419744533(0) win 4096 
emss 1460,wscale O,eol> (DF) 

10:27:53.92 D > C: S 10082297:10082297(0) ack 419744534 
win 8760 emss 1460> (DF) 

10:27:53.95 C > D: . ack 1 win 4096 (DF) 
10:27:54.42 C > D: P 1:4(3) ack 1 win 4096 (DF) 
10:27:54.62 D > C: . ack 4 win 8757 (DF) 
10:27:54.76 C > D: P 4:7(3) ack 1 win 4096 (DF) 
10:27:54.89 D > C: P 1:11(10) ack 7 win 8754 (DF) 
10:27:54.90 D > C: FP 11:51(40) ack7 win 8754 (DF) 
10:27:54.92 C > D: . ack 52 win 4096 (DF) 
10:27:55.01 C > D: FP 7:7(0) ack 52 win 4096 (DF) 
10:27:55.09 D > C: . ack 8 win 8754 (DF) 

Made using tcpdump (no losses reported by the packet filter). 

Here, Machine D sends a FIN with 40 bytes of data even before the 
original 10 octets have been acknowledged. This is correct 
behavior as it provides for the highest performance. 

References 
This problem is documented in [Dawson97]. 

How to detect 
For implementations manifesting this problem, it shows up on a 
packet trace. 

2.16. 

Name of Problem 
Failure to send a RST after Half Duplex Close 

Classification 
Resource management 

Description 
RFC 1122 4.2.2.13 states that a TCP SHOULD send a RST if data is 
received after "half duplex closeg1, i.e. if it cannot be delivered 
to the application. A TCP that fails to do so is said to exhibit 
'IFailure to send a RST after Half Duplex Close". 

Significance 
Potentially serious for TCP endpoints that manage large numbers of 
connections, due to exhaustion of memory and/or process slots 
available for managing connection state. 
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Implications 
Failure to send the RST can lead to permanently hung TCP 
connections. This problem has been demonstrated when HTTP clients 
abort connections, common when users move on to a new page before 
the current page has finished downloading. The HTTP client closes 
by transmitting a FIN while the server is transmitting images, 
text, etc. The server TCP receives the FIN, but its application 
does not close the connection until all data has been queued for 
transmission. Since the server will not transmit a FIN until all 
the preceding data has been transmitted, deadlock results if the 
client TCP does not consume the pending data or tear down the 
connection: the window decreases to zero, since the client cannot 
pass the data to the application, and the server sends probe 
segments. The client acknowledges the probe segments with a zero 
window. As mandated in RFC1122 4.2.2.17, the probe segments are 
transmitted forever. Server connection state remains in 
CLOSE - WAIT, and eventually server processes are exhausted. 

Note that there are two bugs. First, probe segments should be 
ignored if the window can never subsequently increase. Second, a 
RST should be sent when data is received after half duplex close. 
Fixing the first bug, but not the second, results in the probe 
segments eventually timing out the connection, but the server 
remains in CLOSE - WAIT for a significant and unnecessary period. 

Relevant RFCs 
RFC 1122 sections 4.2.2.13 and 4.2.2.17. 

Trace file demonstrating it 
Made using an unknown network analyzer. No drop information 
available. 

client.1391 > 
server.8080 > 
client.1391 > 
client.1391 > 
server.8080 > 
server.8080 > 
server. 8080 > 
server.8080 > 
client.1391 > 
server.8080 > 
server.8080 > 
server.8080 > 
server. 8080 > 
client.1391 > 
server.8080 > 
server.8080 > 

server.8080: 
client.1391: 
server.8080: 
server.8080: 
client.1391: 
client.1391: 
client.1391: 
client.1391: 
server. 8080 : 
client.1391: 
client.1391: 
client.1391: 
client.1391: 
server.8080: 
client.1391: 
client.1391: 

S 0:1(0) ack: 0 win: 2000 cmss: 5b4> 
SA 8c01:8c02(0) ack: 1 win: 8000 cmss:100> 
PA 
PA 1:lc2(lcl) ack: 8c02 win: 2000 
[DFI PA 8c02:8cde(dc) ack: lc2 win: 8000 
[DFI A 8cde:9292(5b4) ack: lc2 win: 8000 
[DFI A 9292:9846(5b4) ack: lc2 win: 8000 
[DFI A 9846:9dfa(5b4) ack: lc2 win: 8000 
PA 
[DFI A 9dfa:a3ae(5b4) ack: le2 win: 8000 
[DFI A a3ae:a962(5b4) ack: lc2 win: 8000 
[DFI A a962:af16(Sb4) ack: lc2 win: 8000 
[DFI A af16:b4ca(5b4) ack: lc2 win: 8000 
PA 
[DFI A b4ca:ba7e(5b4) ack: lc2 win: 8000 
[DFI A b4ca:ba7e(5b4) ack: lc2 win: 8000 
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client.1391 > server.8080: PA 
server.8080 > client.1391: [DF] A ba7e:bdfa(37c) ack: 1c2 win: 8000 
client.1391 > server.8080: PA 
server.8080 > client.1391: [DF] A bdfa: dfb(1) ack: lc2 win: 8000 
client.1391 > server.8080: PA 

[ HTTP client aborts and enters FIN - WAIT - 1 I 
client.1391 > server.8080: FPA 

[ server ACKs the FIN and enters CLOSE - WAIT ] 

server.8080 > client.1391: [DF] A 

[ client enters FIN-WAIT - 2 1 

server.6080 > client.1391: [DF] A bdfa:bdfb(l) ack: lc3 win: 8000 

server continues to try to send its data 3 

client.1391 
server.8080 
client.1391 
server. 8080 
client.1391 
server.8080 
client.1391 
server.8080 
client.1391 

> server. 8080 : 
> client.1391: 
> server.8080: 
> client.1391: 
> server.8080: 
> client.1391: 
> server.8080: 
> client.1391: 
> server.8080: 

PA e window = 0 > 
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000 
PA e window = 0 > 
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000 
PA e window = 0 > 
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000 
PA e window = 0 > 
[DFI A bdfa:bdfb(l) ack: lc3 win: 8000 
PA e window = 0 > 

[ . . .  repeat ad exhaustium . . .  I 
Trace file demonstrating correct behavior 

Made using an unknown network analyzer. No drop information 
available. 

client > server D=80 S=59500 Syn Seq=337 Len=O Win=8760 
server > client D=59500 S=80 Syn Ack=338 Seq=80153 Len=O Win=8760 
client > server D=80 S=59500 Ack=80154 Seq=338 Len=O Win=8760 

[ . . .  normal data omitted . . .  1 
client > server D=80 S=59500 Ack=14559 Seq=596 Len=O Win=8760 
server > client D=59500 S=80 Ack=596 Seq=114559 Len=1460 Win=8760 

[ client closes connection I 

client > server D=80 S=59500 Fin Seq=596 Len=O Win=8760 
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server > 

E client 
client > 
server > 
client > 
server > 
client > 
server > 
client > 
server > 
client > 

TCP Implementat Problem Mar 9 

client D=59500 S=80 Ack=597 Seq=116 

sends RST (RF 

server D= 
client D=59500 S=8 
server D=80 S=59500 Rst 
client D=59500 S=8 
server D=80 S=59500 Rst 
client D=59500 S=80 Ack= 
server D=80 S=59500 Rst Seq=597 Len=O Win=O 

ltclientll sends a number of RSTs, one in response to each incoming 
packet from "server". One might wonder why ffserverlv keeps sending 
data packets after it has received a RST from llclientll; the 
explanation is that tlserverlt had already transmitted all five of 
the data packets before receiving the first RST from rrclientTt, so 
it is too late to avoid transmitting them. 

How to detect 
The problem can be detected by inspecting packet traces of a 
large, interrupted bulk transfer. 

2.17. 

Name of Problem 
Failure to RST on close with data pending 

Classification 
Resource management 

Description 
When an application closes a connection in such a way that it can 
no longer read any received data, the TCP SHOULD, per section 
4.2.2.13 of RFC 1122, send a RST if there is any unread received 
data, or if any new data is received. A TCP that fails to do so 
exhibits "Failure to RST on close with data pending". 

Note that, for some TCPs, this 
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Significance 
This problem is most significant for endpoints that engage in 
large numbers of connections, as their ability to do so will be 
curtailed as they leak away resources. 

Implications 
Failure to reset the connection can lead to permanently hung 
connections, in which the remote endpoint takes no further action 
to tear down the connection because it is waiting on the local TCP 
to first take some action. This is particularly the case if the 
local TCP also allows the advertised window to go to zero, and 
fails to tear down the connection when the remote TCP engages in 
llpersistll probes (see example below). 

Relevant RFCs 
RFC 1122 section 4.2.2.13. Also, 4.2.2.17 for the zero-window 
probing discussion below. 

Trace file demonstrating it 
Made using tcpdump. No drop information available. 

13:11:46.04 A > B: S 458659166:458659166(0) win 4096 

13:11:46.04 B > A: S 792320000:792320000(0) ack 458659167 

13:11:46.04 A > B: . ack 1 win 4096 (DF) 
13:11.55.80 A > B: . 1:513(512) ack 1 win 4096 (DF) 
13:11.55.80 A > B: . 513:1025(512) ack 1 win 4096 (DF) 
13:11:55.83 B > A: . ack 1025 win 3072 
13:11.55.84 A > B: . 1025:1537(512) ack 1 win 4096 (DF) 
13:11.55.84 A > B: . 1537:2049(512) ack 1 win 4096 (DF) 
13:11.55.85 A > B: . 2049:2561(512) ack 1 win 4096 (DF) 
13:11:56.03 B > A: . ack 2561 win 1536 
13:11.56.05 A > B: . 2561:3073(512) ack 1 win 4096 (DF) 
13:11.56.06 A > B: . 3073:3585(512) ack 1 win 4096 (DF) 
13:11.56.06 A > B: . 3585:4097(512) ack 1 win 4096 (DF) 
13:11:56.23 B > A: . ack 4097 win 0 
13:11:58.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF) 
13:11:58.16 B > A: . ack 4097 win 0 
13:12:00.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF) 
13:12:00.16 B > A: . ack 4097 win 0 
13:12:02.16 A > B: . 4096:4097(1) ack 1 win 4096 (DF) 
13:12:02.16 B > A: . ack 4097 win 0 
13:12:05.37 A > B: . 4096:4097(1) ack 1 win 4096 (DF) 
13:12:05.37 B > A: . ack 4097 win 0 
13:12:06.36 B > A: F 1:1(0) ack 4097 win 0 
13:12:06.37 A > B: . ack 2 win 4096 (DF) 
13:12:11.78 A > B: . 4096:4097(1) ack 2 win 4096 (DF) 

cmss 1460,wscale O,eol> (DF) 

win 4096 
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13:12:11.78 B > A: . ack 4097 win 0 
13:12:24.59 A > B: . 4096:4097(1) ack 2 win 4096 (DF) 
13:12:24.60 B > A: . ack 4097 win 0 
13:12:50.22 A > B: . 4096:4097(1) ack 2 win 4096 (DF) 
13:12:50.22 B > A: . ack 4097 win 0 

Machine B in the trace above does not drop received data when the 
socket is llclosedll by the application (in this case, the 
application process was terminated). This occurred at 
approximately 13:12:06.36 and resulted in the FIN being sent in 
response to the close. However, because there is no longer an 
application to deliver the data to, the TCP should have instead 
sent a RST. 

Note: Machine A ’ s  zero-window probing is also broken. 
resending old data, rather than new data. Section 3.7 in RFC 793 
and Section 4.2.2.17 in RFC 1122 discuss zero-window probing. 

It is 

Trace file demonstrating better behavior 
Made using tcpdump. No drop information available. 

Better, but still not fully correct, behavior, per the discussion 
below. We show this behavior because it has been observed for a 
number of different TCP implementations. 

13:48:29.24 C > D: 

13:48:29.24 D > C: 

13:48:29.25 C > D: 
13:48:30.78 C > D: 
13:48:30.79 C > D: 
13:48:30.80 D > C: 
13:48:32.75 C > D: 
13:48:32.82 D > C: 
13:48:34.76 C > D: 
13:48:34.84 D > C: 
13:48:36.34 D > C: 
13:48:36.34 C > D: 
13:48:36.34 D > C: 
13:48:36.34 C > D: 
13:48:36.34 D > C: 

S 73445554 :73445554 ( 0 )  win 4096 

S 36050296:36050296(0) ack 73445555 

, ack 1 win 4096 (DF) 
. 1:1461(1460) ack 1 win 4096 (DF) 
. 1461:2921(1460) ack 1 win 4096 (DF) 
. ack 2921 win 1176 (DF) 
. 2921:4097(1176) ack 1 win 4096 (DF) 
. ack 4097 win 0 (DF) 
. 4096:4097(1) ack 1 win 4096 (DF) . ack 4097 win 0 (DF) 
FP 1:1(0) ack 4097 win 4096 (DF) 
. 4097:5557(1460) ack 2 win 4096 (DF) 
R 36050298 :36050298 ( 0 )  win 24576 
. 5557:7017(1460) ack 2 win 4096 (DF) 
R 36050298:36050298 ( 0 )  win 24576 

cmss 1460,wscale O,eol> (DF) 

win 4096 cmss 1460,wscale O,eol> (DF) 

In this trace, the application process is terminated on Machine D 
at approximately 13:48:36.34. Its TCP sends the FIN with the 
window opened again (since it discarded the previously received 
data). Machine C promptly sends more data, causing Machine D t o  
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reset the connection since it cannot deliver the data to the 
application. Ideally, Machine D SHOULD send a RST instead of 
dropping the data and re-opening the receive window. 

Note: Machine C's zero-window probing is broken, the same as in 
the example above. 

Trace file demonstrating correct behavior 
Made using tcpdump. No losses reported by the packet filter. 

14:12:02.19 E > F: 
14:12:02.19 F > E :  

14:12:02.19 E > F: 
14:12:10.43 E > F: 
14:12:10.61 F > E: 
14:12:10.61 E > F: 
14:12:10.61 E > F: 
14:12:10.81 F > E :  
14:12:10.81 E > F: 
14:12:10.81 E > F: 
14:12:10.81 E > F: 
14:12:11.01 F > E: 
14:12:11.01 E > F: 
14:12:11.01 E > F: 
14:12:11.21 F > E :  
14:12:15.88 E > F: 
14:12:16.06 F > E: 
14:12:20.88 E > F: 
14:12:20.91 F > E :  
14:12:21.94 F > E:  

S 1143360000:1143360000(0) win 4096 
S 1002988443 :1002988443(0 )  ack 1143360001 

. ack 1 win 4096 

. 1 :513 (512) ack 1 win 4096 

. ack 513 win 3584 (DF) 

. 513:1025(512) ack 1 win 4096 

. 1025:1537(5121 ack 1 win 4096 

. ack 1537 win 2560 (DF) 

. 1537:2049(512) ack 1 win 4096 

. 2049:2561(512) ack 1 win 4096 

. 2561:3073(512) ack 1 win 4096 

. ack 3073 win 1024 (DF) 

. 3073:3585(512) ack 1 win 4096 

. 3585:4097(512) ack 1 win 4096 

. ack 4097 win 0 (DF) 

. 4097:4098(1) ack 1 win 4096 . ack 4097 win 0 (DF) 

. 4097:4098(1) ack 1 win 4096 

. ack 4097 win 0 (DF) 
R 1002988444 : 1002988444 ( 0 )  win 4096 

win 4096 cmss 1460> (DF) 

When the application terminates at 14:12:21.94, F immediately 
sends a RST. 

Note: Machine E ' s  zero-window probing is (finally) correct. 

How to detect 
The problem can often be detected by inspecting packet traces of a 
transfer in which the receiving application terminates abnormally. 
When doing so, there can be an ambiguity (if only looking at the 
trace) as to whether the receiving TCP did indeed have unread data 
that it could now no longer deliver. To provoke this to happen, 
it may help to suspend the receiving application so that it fails 
to consume any data, eventually exhausting the advertised window. 
At this point, since the advertised window is zero, we know that 
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the receiving TCP has undelivered ata buffered Terminating 
the application process then should suffice to t the 
correctness of the TCP's behavior. 

2.18. 

Name of Problem 
Options missing from TCP MSS calculation 

Classification 
Reliability / performance 

Description 
When a TCP determines how much data to send per packet, it 
calculates a segment size based on the MTU of the path. It must 
then subtract from that MTU the size of the IP and TCP headers in 
the packet. If IP options and TCP options are not taken into 
account correctly in this calculation, the resulting segment size 
may be too large. TCPs that do so are said to exhibit "Options 
missing from TCP MSS calculation1I. 

Significance 
In some implementations, this causes the transmission of strangely 
fragmented p ckets. In some implementations with Path MTU (PMTU) 
discovery [ C11911, this problem can actually result in a total 
failure to transmit any data at all, regardless of the environment 
(see below). 

Arguably, especially since the wide deployment of firewalls, IP 
options appear only rarely in normal operations. 

Implications 
In implementations using PMTU discovery, this problem can result 
in packets that are too large for the output interface, and that 
have the DF (don't fragment) bit set in the IP header. Thus, the 
IP layer on the local machine is not allowed to fragment the 
packet to send it out the interface. It instead informs the TCP 
layer of the correct MTU size of the interface; the TCP layer 
again miscomputes the MSS by failing to take into account the size 
of IP options; and the problem repeats, with no data flowing. 

Relevant RFCs 
2 describes the calculation of the tive send MSS. RFC 
scribes Path MTU discover 
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Trace file demonstrating it 
Trace file taking using tcpdump on host C. The first trace 
demonstrates the fragmentation that occurs without path MTU 
discovery: 

13:55:25.488728 A.65528 > C.discard: 
P 567833:569273(1440) ack 1 win 17520 
cnop,nop,timestamp 3839 1026342> 
(frag 20828:1472@0+) 
(ttl 62, optlen=8 LSRR{B#} NOP) 

13:55:25.488943 A > C: 
(frag 20828:8@1472) 
(ttl 62, optlen=8 LSRR{B#} NOP) 

13:55:25.489052 C.discard > A.65528: 
. ack 566385 win 60816 
cnop,nop,timestamp 1026345 3839> (DF) 
(ttl 6 0 ,  id 41266) 

Host A repeatedly sends 1440-octet data segments, but these hare 
fragmented into two packets, one with 1432 octets of data, and 
another with 8 octets of data. 

The second trace demonstrates the failure to send any data 
segments, sometimes seen with hosts doing path MTU discovery: 

13:55:44.332219 A.65527 > C.discard: 
S 1018235390:l018235390 ( 0 )  win 16384 
cmss 1460,nop,wscale O,nop,nop,timestamp 3876 O >  (DF) 
(ttl 62, id 20912, optlen=8 LSRR{B#} NOP) 

13:55:44.333015 C-discard > A.65527: 
S 1271629000:1271629000(0) ack 1018235391 win 60816 
cmss 1460,nop,wscale O,nop,nop,timestamp 1026383 3876> (DF) 
(ttl 6 0 ,  id 41427) 

13:55:44.333206 C.discard > A.65527: 
S 1271629000:1271629000(0) ack 1018235391 win 60816 
cmss 1460,nop,wscale O,nop,nop,timestamp 1026383 3876> (DF) 
(ttl 6 0 ,  id 41427) 

This is all of the activity seen on this connection. Eventually 
host C will time out attempting to establish the connection. 

How to detect 
The I'netcatll utility [Hobbit961 is useful for generating source 
routed packets: 
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1% nc C discard 
(interactive typing) 
^C 
2% nc C discard e /dev/zero 
^C 
3% nc -g B C discard 
(interactive typing) 
^C 
4% nc -g B C discard e /dev/zero 
*C 

Lines 1 through 3 should generate appropriate packets, which can 
be verified using tcpdump. If the problem is present, line 4 
should generate one of the two kinds of packet traces shown. 

How to fix 
The implementation should ensure that the effective send MSS 
calculation includes a term for the IP and TCP options, as 
mandated by RFC 1122 .  

3 .  Security Considerations 

This memo does not discuss any specific security-related TCP 
implementation problems, as the working group decided to pursue 
documenting those in a separate document. Some of the implementation 
problems discussed here, however, can be used for denial-of-service 
attacks. Those classified as congestion control present 
opportunities to subvert TCPs used for legitimate data transfer into 
excessively loading network elements. Those classified as 
slperformanceff , (Ireliability1I and "resource management" may be 
exploitable for launching surreptitious denial-of-service attacks 
against the user of the TCP. Both of these types of attacks can be 
extremely difficult to detect because in most respects they look 
identical to legitimate network traffic. 
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Full Copyright Statement 
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The limited permissions granted above are perpetual and will not be 
revoked by the Internet Society or its successors or assigns. 

This document and the information contained herein is provided on an 
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TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION 
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
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